Skip to main content

Some properties of distortion risk measures

  • Conference paper
Advances in Mathematical Economics

Part of the book series: Advance in Mathematical Economics ((MATHECON,volume 12))

Abstract

We give a simplified proof of the fact that law invariant convex risk mea sures automatically have Fatou property, which is first shown by Jouini et al. (Adv. Math. Econ. 9:49–71, 2006). After providing a streamlined proof of Kusuoka's rep resentation theorem of law invariant and comonotonically additive coherent risk mea sures, we prove that a coherent distortion risk measures preserves some well-known stochastic orders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acerbi, C.: Spectral measures of risk: A coherent representation of subjective risk aversion. J. Banking Finance 26, 1505–1518 (2002)

    Article  Google Scholar 

  2. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Thinking coherently. RISK Mag. 10 (November), 68–71 (1997)

    Google Scholar 

  3. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  Google Scholar 

  4. Delbaen, F.: Coherent risk measures on general probability spaces. In: Sandmann, K., Schönbucher, P.J. (eds.): Advances in finance and stochastics. Berlin: Springer 2002, pp. 1–37

    Google Scholar 

  5. Denneberg, D.: Premium calculation: Why standard deviation should be replaced by absolute deviation. ASTIN Bull. 20, 181–190 (1990)

    Article  Google Scholar 

  6. Denneberg, D.: Non-additive measures and integral. Dordrecht: Kluwer 1994

    Google Scholar 

  7. Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., Vyncke, D.: The concept of comonotonicity in actuarial science and finance: theory. Insur. Math. Econ. 31, 3–33 (2002)

    Article  Google Scholar 

  8. Föllmer, H., Schied, A.: Robust preferences and convex measures of risk. In: Sandmann, K., Schönbucher, P.J. (eds.): Advances in finance and stochastics. Berlin: Springer 2002, pp. 39–56.

    Google Scholar 

  9. Föllmer, H., Schied, A.: Stochastic finance: An introduction in discrete time. Berlin: Walter de Gruyter 2002

    Google Scholar 

  10. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 2nd edn. Cambridge: Cambridge University Press 1952

    Google Scholar 

  11. Jouini, E., Schachermayer, W., Touzi, N.: Law invariant risk measures have the Fatou property. Adv. Math. Econ. 9, 49–71 (2006)

    Article  Google Scholar 

  12. Kusuoka, S.: On law invariant coherent risk measures. Adv. Math. Econ. 3, 83–95 (2001)

    Google Scholar 

  13. Lehmann, E.L.: Some concepts of dependence. Ann. Math. Statist. 37, 1137– 1153 (1966)

    Article  Google Scholar 

  14. Leitner, J.: A short note on second-order stochastic dominance preserving coher ent risk measures. Math. Finance 15, 649–651 (2005)

    Article  Google Scholar 

  15. McNeil, A.J., Frey, R., Embrechts, P.: Quantitative risk management: concepts, techniques, and tools. Princeton, NJ: Princeton University Press 2005

    Google Scholar 

  16. Müller, A., Stoyan, D.: Comparison methods for stochastic models and risks. Chichester: Wiley 2002

    Google Scholar 

  17. Tsukahara, H.: One-parameter families of distortion risk measures. Math. Fin. (2009) (to appear)

    Google Scholar 

  18. Wang, S.S.: Premium calculation by transforming the layer premium density. ASTIN Bull. 26, 71–92 (1996)

    Article  Google Scholar 

  19. Wang, S.S., Young, V.R., Panjer, H.H.: Axiomatic characterization of insurance prices. Insur. Math. Econ. 21, 173–183 (1997)

    Article  Google Scholar 

  20. Yaari, M.E.: The dual theory of choice under risk. Econometrica 55, 95–115 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this paper

Cite this paper

Tsukahara, H. (2009). Some properties of distortion risk measures. In: Kusuoka, S., Maruyama, T. (eds) Advances in Mathematical Economics. Advance in Mathematical Economics, vol 12. Springer, Tokyo. https://doi.org/10.1007/978-4-431-92935-2_6

Download citation

Publish with us

Policies and ethics