Skip to main content

A Methodological Framework to Quantify Anthropogenic Effects on Landscape Patterns

  • Chapter
Book cover Landscape Ecology in Asian Cultures

Abstract

From an ecological landscape perspective, cultural landscapes can be considered as “anthropized” landscapes, in which patterns and processes are altered by human intervention. The importance of the study of spatial patterns in landscapes is justified by the pattern/process paradigm. The emergent properties of patterns reflect two components: landscape composition, which describes the number of patch types as well as their abundance, and landscape configuration, which refers to the spatial arrangement of the patch types. In this chapter, methods and strategies to analyze spatial pattern and landscape dynamics are discussed, and emphasis is put on the detection and quantification of anthropogenic effects on landscapes. Land mosaics showing anthropogenic effects are characterized by fragmented natural land cover, high frequencies of edge habitat, simple patch geometry, and dominant proportions of anthropogenic patch types. Landscape transformations associated with “anthropization” lead to a disintegration of natural patch types and to a reinforcement of anthropogenic ones. Four techniques to measure anthropogenic effects on pattern are discussed (1) the quantification of the fragmentation of natural habitats and its interpretation in terms of diversity, heterogeneity and entropy, (2) the quantification of edge effects in order to measure the ecological impact of human activity, (3) the determination of patch fractal dimensions to detect pattern simplification, and (4) the determination of the landscape transformation processes responsible for pattern dynamics. At the end of the chapter, a short list of analysis methods and strategies is proposed for detecting and measuring landscape “anthropization.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addison PS (1997) Fractals and chaos. An illustrated course. Institute of Physics Publishing, Bristol and Philadelphia

    Book  Google Scholar 

  • Allen TFH, Starr TB (1982) Hierarchy: perspectives for ecological complexity. University of Chicago Press, Chicago

    Google Scholar 

  • Alongo Longomba S (2007) Etude de l’effet des lisières sur l’humidité équivalente et la température du sol d’un écosystème forestier de la cuvette centrale congolaise. Mémoire présenté en vue de l’obtention du DEA en Gestion de la biodiversité, Université de Kisangani

    Google Scholar 

  • Antrop M (2001) The language of landscape ecologists and planners – a comparative content analysis of concepts used in landscape ecology. Landsc Urban Plan 55:163–173

    Article  Google Scholar 

  • August P, Iverson L, Nugranad J (2002) Human conversion of terrestrial habitats. In: Gutzwiller KJ (ed) Applying landscape ecology in biological conservation. Springer, New York

    Google Scholar 

  • Baker WL, Cai Y (1992) The r.le programs for multi-scale analysis of landscape structure using the GRASS geographical information system. Landsc Ecol 7:291–302

    Article  Google Scholar 

  • Bamba I, Mama A, Neuba DFR et al (2008) Influence des actions anthropiques sur la dynamique spatio-temporelle de l’occupation du sol dans la province du Bas-Congo (R.D. Congo). Sci Nat 5(1):49–60

    Google Scholar 

  • Bamba I, Iyongo Waya Mongo L, Imre A et al (2009) La variabilité du facteur de graduation utilisé dans la méthode d’estimation de la dimension fractale des mosaïques paysagères. Ann Inst Supér Etu Agron Bengamisa 4:168–176

    Google Scholar 

  • Barima YSS, Barbier N, Bamba I et al (2009) Dynamique paysagère en milieu de transition forêt-savane ivoirienne. Bois For Trop 299:15–25

    Google Scholar 

  • Baskent EZ, Jordan GA (1995) Characterizing spatial structure of forest landscapes. Can J For Res 25:1830–1849

    Article  Google Scholar 

  • Bogaert J (2005) Metriche del paesaggio: definizioni ed utilizzo. Estimo e Territorio 68(9):8–15

    Google Scholar 

  • Bogaert J, Hong SK (2004) Landscape ecology: monitoring landscape dynamics using spatial pattern metrics. In: Hong SK, Lee JA, Ihm BS et al (eds) Ecological issues in a changing world. Status, response and strategy. Kluwer, Dordrecht

    Google Scholar 

  • Bogaert J, Mahamane A (2005) Ecologie du paysage: cibler la configuration et l’échelle spatiale. Ann Sci Agron Bénin 7(1):1–15

    Google Scholar 

  • Bogaert J, Rousseau R, Van Hecke P et al (2000) Alternative area–perimeter ratios for measurement of 2-D shape compactness of habitats. Appl Math Comput 111:71–85

    Article  Google Scholar 

  • Bogaert J, Salvador-Van Eysenrode D, Impens I et al (2001a) The interior-to-edge breakpoint distance as a guideline for nature conservation policy. Environ Manage 27:493–500

    Article  PubMed  CAS  Google Scholar 

  • Bogaert J, Salvador-Van Eysenrode D, Van Hecke P et al (2001b) Geometrical considerations for evaluation of reserve design. Web Ecol 2:65–70, Erratum. Web Ecol 2:74

    Google Scholar 

  • Bogaert J, Myneni RB, Knyazikhin Y (2002a) A mathematical comment on the formulae for the aggregation index and the shape index. Landsc Ecol 17:87–90

    Article  Google Scholar 

  • Bogaert J, Zhou L, Tucker CJ et al (2002b) Evidence for a persistent and extensive greening trend in Eurasia inferred from satellite vegetation index data. J Geophys Res 107:14. doi:10.1029/2001JD001075

    Article  Google Scholar 

  • Bogaert J, Ceulemans R, Salvador-Van Eysenrode D (2004) A decision tree algorithm for detection of spatial processes in landscape transformation. Environ Manage 33:62–73

    Article  PubMed  Google Scholar 

  • Bogaert J, Farina A, Ceulemans R (2005) Entropy increase of fragmented habitats signals human impact. Ecol Indic 5:207–212

    Article  Google Scholar 

  • Bogaert J, Bamba I, Koffi KJ et al (2008) Fragmentation of forest landscapes in Central Africa: causes, consequences and management. In: Lafortezza R, Chen J, Sanesi G et al (eds) Pattern and processes in forest landscapes. Multiple use and sustainable management. Springer, New York

    Google Scholar 

  • Bribiesca E (1997) Measuring 2D shape compactness using the contact perimeter. Comput Math Appl 33:1–9

    Article  Google Scholar 

  • Burel F, Baudry J (2003) Ecologie du paysage. Concepts, méthodes et applications. Editions Tec&Doc, Paris

    Google Scholar 

  • Burrough PA (1986) Principles of geographic information systems for land resources assessment. Oxford University Press, Oxford

    Google Scholar 

  • Chen J (1991) Edge effects: microclimatic pattern and biological responses in old-growth Douglas-fir forests. PhD dissertation, University of Washington

    Google Scholar 

  • Cheng Q (1995) The perimeter–area fractal model and its application to geology. Math Geol 27:69–82

    Article  Google Scholar 

  • Collinge SK (1998) Spatial arrangement of habitat patches and corridors: clues from ecological field experiments. Landsc Urban Plan 42:157–168

    Article  Google Scholar 

  • Collinge SK, Forman RTT (1998) A conceptual model of land conversion processes: predictions and evidence from a microlandscape experiment with grassland insects. Oikos 82:66–84

    Article  Google Scholar 

  • Colson F, Bogaert J, Ceulemans R (2005) Spatial pattern analysis to address reliability issues in remotely sensed data. In: Veroustraete F, Bartholomé E, Verstraeten WW (eds) Proceedings of the second international spot/vegetation users conference. Office for Official Publications of the European Communities, Luxemburg

    Google Scholar 

  • Coulson RN, Saarenmaa H, Daugherty WC et al (1999) A knowledge system environment for ecosystem management. In: Klopatek JM, Gardner RH (eds) Landscape ecological analysis. Issues and applications. Springer, Berlin

    Google Scholar 

  • Dahdouh-Guebas F, Verheyden A, De Genst W et al (2000) Four decade vegetation dynamics in Sri Lankan mangroves as detected from sequential aerial photography: a case study in Galle. Bull Mar Sci 67:741–759

    Google Scholar 

  • De Cola L (1989) Fractal analysis of a classified Landsat scene. Photogramm Eng Rem S 55:601–610

    Google Scholar 

  • De Smet K (2005) Spatio-temporal dynamics of mangroves detected using aerial photography, Ikonos satellite imagery and fieldwork in Galle-Unawatuna, Sri Lanka. Thesis submitted in fulfilment of the requirements for the degree of Licentiaat Biologie, Vrije Universiteit Brussel

    Google Scholar 

  • FAO (2006) Global forest resources assessment of 2005. Progress towards sustainable forest management, vol 147, FAO forestry paper. FAO, Rome

    Google Scholar 

  • Farina A (2000a) Landscape ecology in action. Kluwer, Dordrecht

    Book  Google Scholar 

  • Farina A (2000b) Principles and methods in landscape ecology. Kluwer, Dordrecht

    Google Scholar 

  • Forman RTT (1995) Land mosaics. The ecology of landscapes and regions. Cambridge University Press, Cambridge

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. Wiley, New York

    Google Scholar 

  • Frohn RC (1998) Remote sensing for landscape ecology. New metric indicators for monitoring, modelling, and assessment of ecosystems. Lewis Publishers, Boca Raton

    Google Scholar 

  • Giles RH Jr, Trani MK (1999) Key elements of landscape pattern measures. Environ Manage 23:477–481

    Article  Google Scholar 

  • Groom MJ, Schumaker N (1993) Evaluating landscape change: patterns of worldwide deforestation and local fragmentation. In: Kareiva PM, Kingsolver JG, Huey RB (eds) Biotic interactions and global change. Sinauer, Sunderland

    Google Scholar 

  • Gustafson EJ (1998) Quantifying landscape spatial pattern: what is the state of the art. Ecosystems 1:143–156

    Article  Google Scholar 

  • Gustafson EJ, Diaz N (2002) Landscape pattern, timber extraction, and biological conservation. In: Gutzwiller KJ (ed) Applying landscape ecology in biological conservation. Springer, New York

    Google Scholar 

  • Halley JM, Hartley S, Kallimanis AS et al (2004) Uses and abuses of fractal methodology in ecology. Ecol Lett 7:254–271

    Article  Google Scholar 

  • Hilty JA, Lidicker WZ Jr, Merenlender AM (2006) Corridor ecology. The science and practice of linking landscapes for biodiversity conservation. Island Press, Washington

    Google Scholar 

  • Hobbs RJ (2002) Habitat networks and biological conservation. In: Gutzwiller KJ (ed) Applying landscape ecology in biological conservation. Springer, New York

    Google Scholar 

  • Hu J, Bogaert J, Tan B et al (2008) A rank-based algorithm for aggregating land cover maps. In: Dupont A, Jacobs H (eds) Landscape ecology research trends. Nova Science, New York

    Google Scholar 

  • Imre A (2006) Artificial fractal dimension obtained by using perimeter area relationship on digitalized images. Appl Math Comput 173:443–449

    Article  Google Scholar 

  • Imre AR, Bogaert J (2004) The fractal dimension as a measure of the quality of habitats. Acta Biotheor 52:41–56

    Article  PubMed  CAS  Google Scholar 

  • Iyongo Waya Mongo L (2008) Etude des effets de lisière sur les populations de rongeurs dans la reserve forestière de Masako. Mémoire présenté en vue de l’obtention du DEA en Sciences de la vie – Biologie végétale, Université libre de Bruxelles

    Google Scholar 

  • Jaeger J (2000) Landscape division, splitting index, and effective mesh size: new measures of landscape fragmentation. Landsc Ecol 15:115–130

    Article  Google Scholar 

  • Ji J, Jiang H, Yang W (2008) National policy’s influence on Baoxing county’s landscape patterns and Giant Panda population. In: Chen J, Lui S, Lucas R et al (eds) Proceedings of the international conference “Landscape ecology and forest management”, IUFRO8.01.02, Chengdu

    Google Scholar 

  • Johnsson K (1995) Fragmentation index as a region based GIS operator. Int J Geogr Inf Syst 9:211–220

    Article  Google Scholar 

  • Kabulu Djibu JP, Bamba I, Munyemba F et al (2008) Analyse de la structure spatiale des forêts au Katanga. Ann Fac Sci Agron Univ Lubumbashi I(2):12–18

    Google Scholar 

  • Kenkel NC, Walker DJ (1996) Fractals in the biological sciences. Coenoses 11:77–100

    Google Scholar 

  • Koffi KJ, Deblauwe V, Sibomana S et al (2007) Spatial pattern analysis as a focus of landscape ecology to support evaluation of human impact on landscapes and diversity. In: Hong SK, Nakagoshi N, Fu B et al (eds) Landscape ecological applications in man-influenced areas. Linking man and nature systems. Springer, Dordrecht

    Google Scholar 

  • Krummel JR, Gardner RH, Sugihara G et al (1987) Landscape patterns in a disturbed environment. Oikos 48:321–324

    Article  Google Scholar 

  • Li H, Reynolds JF (1994) A simulation experiment to quantify spatial heterogeneity in categorical maps. Ecology 75:2446–2455

    Article  Google Scholar 

  • Li H, Wu J (2004) Use and misuse of landscape indices. Landsc Ecol 19:389–399

    Article  Google Scholar 

  • Litucha Bakokola Makeu J (2007) Etude de l’effet de lisière sur le microclimat thermique d’un écosystème forestier de la cuvette centrale congolaise. Mémoire présenté en vue de l’obtention du DEA en Gestion de la biodiversité, Université de Kisangani

    Google Scholar 

  • Lokonda O. Wa Kipifo M (2007) Etude de l’effet de lisière sur la réaction ou pH du sol dans un paysage fragmenté de la cuvette centrale congolaise. Mémoire présenté en vue de l’obtention du DEA en Gestion de la biodiversité, Université de Kisangani

    Google Scholar 

  • Lovejoy S (1982) Area–perimeter relation for rain and cloud areas. Science 216:185–187

    Article  PubMed  CAS  Google Scholar 

  • Magurran AE (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Freeman and Company, New York

    Google Scholar 

  • McGarigal K, Cushman SA, Neel MC et al (2002) FRAGSTATS: spatial pattern analysis program for categorical maps. Computer software program produced at the University of Massachusetts, Amherst. Available at the following web site: http://www.umass.edu/landeco/research/fragstats/fragstats.html

  • McIntyre S, Hobbs RJ (1999) A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conserv Biol 13:1282–1292

    Article  Google Scholar 

  • Monmonier MS (1974) Measures of pattern complexity for choroplethic maps. Am Cartogr 1:159–169

    Article  Google Scholar 

  • Naiman RJ, Holland MM, Decamps H et al (1988) A new UNESCO program: research and management of land: inland water ecotones. Biol Int 17:107–136

    Google Scholar 

  • Noon BR, Dale V (2002) Broad-scale ecological science and its application. In: Gutzwiller KJ (ed) Applying landscape ecology in biological conservation. Springer, New York

    Google Scholar 

  • O’Neill RV, Krummel JR, Gardner RH et al (1988) Indices of landscape pattern. Landsc Ecol 3:153–162

    Article  Google Scholar 

  • Odum HT (1983) Systems ecology: an introduction. Wiley, New York

    Google Scholar 

  • Olsen ER, Ramsey RD, Winn DS (1993) A modified fractal dimension as a measure of landscape diversity. Photogramm Eng Rem S 59:1517–1520

    Google Scholar 

  • Parks PJ (1991) Models of forested and agricultural landscapes: integrating economics. In: Turner MG, Gardner RH (eds) Quantitative methods in landscape ecology. Springer, New York

    Google Scholar 

  • Patton DR (1975) A diversity index for quantifying habitat “edge”. Wildlife Soc B 3:171–173

    Google Scholar 

  • Ricotta C, Olsen ER, Ramsey RD et al (1997) A generalized non-regression technique for evaluating fractal dimension of raster GIS layers consisting of non square cells. Coenoses 12:23–26

    Google Scholar 

  • Robinson JA, McRay B, Lulla KP (2000) Twenty-eight years of urban growth in North America quantified by analysis of photographs from Apollo, Skylab and Shuttle-Mir. In: Lulla KP, Dessinov LV (eds) Dynamic earth environments: remote sensing observations from shuttle-Mir missions. Wiley, New York

    Google Scholar 

  • Rosenfeld A (1974) Compact figures in digital pictures. IEEE Trans Syst Man Cyb 4:221–223

    Google Scholar 

  • Salvador-Van Eysenrode D, Bogaert J, Van Hecke P et al (1998) Influence of tree-fall orientation on canopy gap shape in an Ecuadorian rain forest. J Trop Ecol 14:865–869

    Article  Google Scholar 

  • Salvador-Van Eysenrode D, Bogaert J, Van Hecke P et al (2000) Forest canopy perforation in time and space in Amazonian Ecuador. Acta Oecol 21:285–291

    Article  Google Scholar 

  • Saura S, Torras O, Gil-Tena A et al (2008) Shape irregularity as an indicator of forest biodiversity and guidelines for metrics selection. In: Lafortezza R, Chen J, Sanesi G et al (eds) Pattern and processes in forest landscapes. Multiple use and sustainable management. Springer, New York

    Google Scholar 

  • Smith RL, Smith TM (2000) Elements of ecology. Benjamin Cummings Science Publishing, San Francisco

    Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20:171–197

    Article  Google Scholar 

  • Turner MG, Dale V (1991) Modeling landscape disturbance. In: Turner MG, Gardner RH (eds) Quantitative methods in landscape ecology. Springer, New York

    Chapter  Google Scholar 

  • Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice. Pattern and process. Springer Science+Business Media Inc., New York

    Google Scholar 

  • Urban DL, Wallin DO (2002) Introduction to Markov models. In: Gergel SE, Turner MG (eds) Learning landscape ecology. A practical guide to concepts and techniques. Springer, New York

    Google Scholar 

  • Urban DL, O’Neill RV, Shugart HH Jr (1987) Landscape ecology. A hierarchical perspective can help scientists understand spatial patterns. Bioscience 37:119–127

    Article  Google Scholar 

  • Voss RF (1988) Fractals in nature: from characterization to simulation. In: Peitgen HO, Saupe D (eds) The science of fractal images. Springer, New York

    Google Scholar 

  • Wu D (2007) Development and implementation of image processing algorithms related to the estimation of the interior-to-edge ratio. Thesis submitted in partial fulfilment of the requirements for the Master’s degree of Applied Computer Science, Vrije Universiteit Brussel

    Google Scholar 

  • Wu J, Hobbs RJ (2007) Landscape ecology: the state-of-the-science. In: Wu J, Hobbs RJ (eds) Key topics in landscape ecology. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the government of Ivory Coast for the fellowships of I. Bamba and Y.S.S. Barima. BTC/CTB is acknowledged for the fellowship of L. Iyongo Waya Mongo. This publication was made possible by a research grant from the Fund for Scientific Research – Flanders “Dynamiek in diversiteit, functionaliteit en stabiliteit van mangroven, benaderd vanuit een retrospectieve en actuele teledetectie-aanpak m.b.v. nieuwe patroonherkenningstechnieken.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Bogaert .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Calculation of the Interior-to-Edge Breakpoint Distance Using PatchCalc

The program PatchCalc has been developed and made available as free and open software (Wu 2007). The basic algorithms used in this package implement the identification of the distinct patches, and the calculations for each patch, on a distance map, i.e., a two-dimensional map (say, a matrix) that holds for each pixel inside the patch the minimum distance to the pixels outside the patch. Two distance measures have been implemented.

  • The city block distance (CBD) considers all paths between the pixel being considered and the outside pixels, defined by “stepping” from one pixel to a horizontally or vertically adjacent pixel. The CBD is the minimum number of steps required.

  • The Euclidean distance.

Such a distance map allows us to derive most of the relevant information for each patch.

  • The area, i.e., the number of pixels.

  • The maximum perimeter, i.e., the number of horizontal and vertical edges separating an inner pixel and an adjacent outer pixel.

  • The minimum perimeter, i.e., the number of boundary pixels.

  • The breakpoint distance, which is obtained from a histogram of the values from the distance map, and is derived by taking the smallest integer distance that makes the interior area less than the edge area (median value derived from the histogram).

  • The largest radius, i.e., the maximum of the distance map.

  • The core area.

The software package (including all sources) is available free for both UNIX/Linux and Windows systems. It can be retrieved from the following ftp site from the Vrije Universiteit Brussel − Electronics Department, using the ftp command to access both ftp.etro.vub.ac.be and the subdirectory ETRO/EDGARD_NYSSEN, or using any kind of web browser (Firefox, Explorer, etc.) via the following URL:

ftp://ftp.etro.vub.ac.be/ETRO/EDGARD_NYSSEN/

Use the following credentials to access the ftp site:

Username: etroguest

Password: anonymous1!

The name of the file to be downloaded is PatchCalc_software_<version>.zip (where <version> stands for the version number or version date of the package). This zip archive needs to be unpacked (accessible in a straightforward manner under Windows; the files can be extracted under Linux using the unzip command). The main software consists of the PatchCalc program. The PatchCalc program is normally used in conjunction with generic support software for image processing (mainly for file format conversion). For this purpose, we recommend the use of the free ImageMagick ® package (ImageMagick ® is a registered trademark of ImageMagick Studio LLC). For more details about the installation, see below.

  1. (a) 

    Instructions for Windows users

The main directory of the PatchCalc_software package contains the subdirectory Windows, in turn including the PatchCalc.exe command. Subdirectory code-­Windows contains the sources, so that the executable can be rebuilt from scratch if necessary. The ImageMagick ® package can be obtained via the World Wide Web: http://www.imagemagick.org/script/index.php . It is recommended that the most recent version of the ImageMagick ® package is downloaded and installed. ImageMagick Studio LLC has an ftp site (ftp.imagemagick.org) from which all necessary files can be downloaded, using anonymous ftp or using a web browser (URL: ftp://ftp.imagemagick.org/pub/ImageMagick/ ):

Username: anonymous

Password: <your e-mail address>

The instruction file and the directory containing the installation scripts are, respectively, ftp://ftp.imagemagick.org/pub/ImageMagick/QuickStart.txt

ftp://ftp.imagemagick.org/pub/ImageMagick/binaries/

The installation of PatchCalc (and ImageMagick ®) can be tested using the test data you find in the package.

Use

  • Open a command line dialog (launch Start  →  Run and enter cmd in the dialog).

  • Go to the folder (say, C:\test) where PatchCalc.exe is stored (use the cd command).

  • Copy the image file (say, X.bmp) in that folder.

  • Convert the file X.bmp into a gray-formatted image file. ImageMagick ® provides as useful tools the commands identify (to figure out the dimensions <width>x<height> of the image) and convert (to perform format conversion).

C:\test> identify X.bmp

C:\test> convert -depth 8 -size <width>x<height> X.bmp X.gray

  • Apply PatchCalc.

C:\test> PatchCalc.exe X.bmp X.gray X.txt

Beside text output on X.txt, the program produces a color_0.gray image file showing the distinct patches. This can be converted to any kind of image file using the ImageMagick ® command convert, e.g.,

C:\test> convert -depth 8 -size <width>x<height> color_0.gray color_0.jpg

  1. (b) 

    Instructions for Linux users

The PatchCalc program can be compiled and installed under a Linux system through the following procedure.

  • The extraction of the files of PatchCalc_software_<version>.zip yields a directory­ named PatchCalc_software. Go to the Linux source directory

  • % cd PatchCalc_software/code_Linux

  • This directory contains the source code and makefile. If necessary you can edit this file to change the installation directory (by default, INSTALLDIRECTORY  =  ../Linux). The comments of the makefile also describe in detail how the standard UNIX/Linux command make can be called to manage the compilation/installation process.

  • For compiling and installing PatchCalc simply execute the command.

  • % make install

The ImageMagick ® package can be obtained via the World Wide Web: http://www.imagemagick.org/ . However, as this package is very popular, your brand of Linux almost certainly allows you to fetch and install it using the software installation tools available to you (e.g., synaptic). The installation of PatchCalc (and ImageMagick ®) can be tested using the test data you find in the package.

Use

  • Open a shell window.

  • Go to the folder (say, /home/dominique/software/patchcalc/) where PatchCalc.exe is stored (use the cd command).

  • Copy the image file (say, X.bmp) in that folder.

  • Convert the file X.bmp into a gray-formatted image file. ImageMagick ® provides as useful tools the commands identify (to figure out the dimensions <width>x<height> of the image) and convert (to perform format conversion).

software/patchcalc% identify X.bmp

software/patchcalc% convert -depth 8 -size <width>x<height> X.bmp X.gray

  • Apply PatchCalc

software/patchcalc%./PatchCalc X.bmp X.gray X.txt

Beside text output on X.txt, the program produces a color_0.gray image file showing the distinct patches. This can be converted to any kind of image file, using the ImageMagick ® command convert, e.g.,

software/patchcalc% convert -depth 8 -size <width>x<height> color_0.gray color_0.jpg

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Bogaert, J. et al. (2011). A Methodological Framework to Quantify Anthropogenic Effects on Landscape Patterns. In: Hong, SK., Kim, JE., Wu, J., Nakagoshi, N. (eds) Landscape Ecology in Asian Cultures. Ecological Research Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-87799-8_11

Download citation

Publish with us

Policies and ethics