Skip to main content

Krüppel-like Factors in the Heart

  • Chapter
  • 599 Accesses

Abstract

Despite the development of numerous therapies, heart disease is a major source of morbidity, mortality, and economic burden to society worldwide. A better understanding of the molecular underpinnings that lead to heart failure are likely to facilitate the development of novel therapies. The Krüppel-like factor (KLF) family of zinc finger transcription factors play important roles in modulating cellular functions in a broad range of mammalian cell types, and accumulating evidence demonstrates important roles of these factors in cardiovascular biology. This chapter describes our current understanding of the role of the KLF gene family in cardiac biology and the potential for these factors to serve as therapeutic targets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhikari N, Charles N, Lehmann U et al (2006) Transcription factor and kinase-mediated signaling in atherosclerosis and vascular injury. Curr Atheroscler Rep 8:252–260

    Article  PubMed  CAS  Google Scholar 

  • Ahn YT, Huang B, McPherson L et al (2007) Dynamic interplay of transcriptional machinery and chromatin regulates “late” expression of the chemokine RANTES in T lymphocytes. Mol Cell Biol 27:253–266

    Article  PubMed  CAS  Google Scholar 

  • Akazawa H, Komuro I (2003) Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 92:1079–1088

    Article  PubMed  CAS  Google Scholar 

  • Asano H, Li XS, Stamatoyannopoulos G (2000) FKLF-2: a novel Krüppel-like transcriptional factor that activates globin and other erythroid lineage genes. Blood 95:3578–3584

    PubMed  CAS  Google Scholar 

  • Bensamoun SF, Hawse JR, Subramaniam M et al (2006) TGFbeta inducible early gene-1 knockout mice display defects in bone strength and microarchitecture. Bone 39: 1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharya R, Senbanerjee S, Lin Z et al (2005) Inhibition of vascular permeability factor/ vascular endothelial growth factor-mediated angiogenesis by the Kruppel-like factor KLF2. J Biol Chem 280:28848–28851

    Article  PubMed  CAS  Google Scholar 

  • Braunwald E (2008) Biomarkers in heart failure. N Engl J Med 358:2148–2159.

    Article  PubMed  CAS  Google Scholar 

  • Burkart EM, Sambandam N, Han X et al (2007) Nuclear receptors PPARbeta/delta and PPARalpha direct distinct metabolic regulatory programs in the mouse heart. J Clin Invest 117:3930–3939

    PubMed  CAS  Google Scholar 

  • Chen MM, Lam A, Abraham JA et al (2000) CTGF expression is induced by TGF- beta in cardiac fibrob-lasts and cardiac myocytes: a potential role in heart fibrosis. J Mol Cell Cardiol 32:1805–1819

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Blom IE, Sa S et al (2002) CTGF expression in mesangial cells: involvement of SMADs, MAP kinase, and PKC. Kidney Int 62:1149–1159

    Article  PubMed  CAS  Google Scholar 

  • Clerk A, Kemp TJ, Zoumpoulidou G et al (2006) Cardiac myocyte gene expression profiling during H2O2-induced apoptosis. Physiol Genomics 29:118–27

    Article  PubMed  Google Scholar 

  • Cullingford TE, Butler MJ, Marshall AK et al (2008) Differential regulation of Kruppel-like factor family transcription factor expression in neonatal rat cardiac myocytes: Effects of endothelin-1, oxidative stress and cytokines. Biochim Biophys Acta 1783:1229–1236

    Article  PubMed  CAS  Google Scholar 

  • Czubryt MP, Olson EN (2004) Balancing contractility and energy production: the role of myocyte enhancer factor 2 (MEF2) in cardiac hypertrophy. Recent Prog Horm Res 59:105–124

    Article  PubMed  CAS  Google Scholar 

  • Epstein JA, Parmacek MS (2005) Recent advances in cardiac development with therapeutic implications for adult cardiovascular disease. Circulation 112:592–597

    Article  PubMed  Google Scholar 

  • Feinberg MW, Lin Z, Fisch S et al (2004) An emerging role for Kruppel-like factors in vascular biology. Trends Cardiovasc Med 14:241–246

    Article  PubMed  CAS  Google Scholar 

  • Feng D, Kan YW (2005) The binding of the ubiquitous transcription factor Sp1 at the locus control region represses the expression of beta-like globin genes. Proc Natl Acad Sci U S A 102:9896–9900

    Article  PubMed  CAS  Google Scholar 

  • Finck BN, Kelly DP (2006) PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615–622

    Article  PubMed  CAS  Google Scholar 

  • Fisch S, Gray S, Heymans S et al (2007) Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 104:7074–7079

    Article  PubMed  CAS  Google Scholar 

  • Funnell AP, Maloney CA, Thompson LJ et al (2007) Erythroid kruppel-like factor directly activates the basic kruppel-like factor gene in erythroid cells. Mol Cell Biol 27: 2777–2790

    Article  PubMed  CAS  Google Scholar 

  • Gray S, Feinberg MW, Hull S et al (2002) The Kruppel-like factor KLF15 regulates the insulinsensitive glucose transporter GLUT4. J Biol Chem 277:34322–34328

    Article  PubMed  CAS  Google Scholar 

  • Gray S, Wang B, Orihuela Y et al (2007) Regulation of Gluconeogenesis by Kruppel-like Factor 15. Cell Metab 5:305–312

    Article  PubMed  CAS  Google Scholar 

  • Grepin C, Dagnino L, Robitaille L et al (1994) A hormone-encoding gene identifies a pathway for cardiac but not skeletal muscle gene transcription. Mol Cell Biol 14:3115–3129

    PubMed  CAS  Google Scholar 

  • Grotendorst GR, Okochi H, Hayashi N (1996) A novel transforming growth factor beta response element controls the expression of the connective tissue growth factor gene. Cell Growth Differ 7:469–480

    PubMed  CAS  Google Scholar 

  • Haldar SM, Ibrahim OA, Jain MK (2007) Kruppel-like Factors (KLFs) in muscle biology. J Mol Cell Cardiol 43:1–10

    Article  PubMed  CAS  Google Scholar 

  • Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  PubMed  CAS  Google Scholar 

  • Jain MK, Ridker PM (2005) Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov 4:977–987

    Article  PubMed  CAS  Google Scholar 

  • Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118:10–24

    Article  PubMed  CAS  Google Scholar 

  • Lavallee G, Andelfinger G, Nadeau M et al (2006) The Kruppel-like transcription factor KLF13 is a novel regulator of heart development. Embo J 25:5201–5213

    Article  PubMed  CAS  Google Scholar 

  • Liang Q, De Windt LJ, Witt SA et al (2001) The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J Biol Chem 276:30245–30253

    Article  PubMed  CAS  Google Scholar 

  • Martin KM, Metcalfe JC, Kemp PR (2001) Expression of Klf9 and Klf13 in mouse development. Mech Dev 103:149–151

    Article  PubMed  CAS  Google Scholar 

  • Molkentin JD, Markham BE (1993) Myocyte-specific enhancer-binding factor (MEF-2) regulates alpha-cardiac myosin heavy chain gene expression in vitro and in vivo. J Biol Chem 268:19512–19520

    PubMed  CAS  Google Scholar 

  • Mori T, Sakaue H, Iguchi H et al (2005) Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem 280:12867–12875

    Article  PubMed  CAS  Google Scholar 

  • Oemar BS, Werner A, Garnier JM et al (1997) Human connective tissue growth factor is expressed in advanced atherosclerotic lesions. Circulation 95:831–839

    PubMed  CAS  Google Scholar 

  • Oettgen P (2006) Regulation of vascular inflammation and remodeling by ETS factors. Circ Res 99:1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Oishi Y, Manabe I, Tobe K et al (2008) SUMOylation of Kruppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-delta. Nat Med 14:656–666

    Article  PubMed  CAS  Google Scholar 

  • Perry C, Soreq H (2002) Transcriptional regulation of erythropoiesis. Fine tuning of combinatorial multi-domain elements. Eur J Biochem 269:3607–3618

    Article  PubMed  CAS  Google Scholar 

  • Pikkarainen S, Tokola H, Kerkela R et al (2004) GATA transcription factors in the developing and adult heart. Cardiovasc Res 63:196–207

    Article  PubMed  CAS  Google Scholar 

  • Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-gamma coacti-vator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev 24:78–90

    Article  PubMed  CAS  Google Scholar 

  • Rajamannan NM, Subramaniam M, Abraham TP et al (2007) TGFbeta inducible early gene-1 (TIEG1) and cardiac hypertrophy: Discovery and characterization of a novel signaling pathway. J Cell Biochem 100:315–325

    Article  PubMed  CAS  Google Scholar 

  • Sano M, Minamino T, Toko H et al (2007) p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 446:444–448

    Article  PubMed  CAS  Google Scholar 

  • Scohy S, Gabant P, Van Reeth T et al (2000) Identification of KLF13 and KLF14 (SP6), novel members of the SP/XKLF transcription factor family. Genomics 70:93–101

    Article  PubMed  CAS  Google Scholar 

  • Sen-Banerjee S, Mir S, Lin Z et al (2005) Kruppel-like factor 2 as a novel mediator of statin effects in endothelial cells. Circulation 112:720–726

    Article  PubMed  CAS  Google Scholar 

  • Shindo T, Manabe I, Fukushima Y et al (2002) Kruppel-like zinc-finger transcription factor KLF5/ BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. Nat Med 8:856–863

    PubMed  CAS  Google Scholar 

  • Sogawa K, Imataka H, Yamasaki Y et al (1993) cDNA cloning and transcriptional properties of a novel GC box-binding protein, BTEB2. Nucleic Acids Res 21:1527–1532

    Article  PubMed  CAS  Google Scholar 

  • Song A, Chen YF, Thamatrakoln K et al (1999) RFLAT-1: a new zinc finger transcription factor that activates RANTES gene expression in T lymphocytes. Immunity 10:93–103

    Article  PubMed  Google Scholar 

  • Subramaniam M, Gorny G, Johnsen SA et al (2005) TIEG1 null mouse-derived osteoblasts are defective in mineralization and in support of osteoclast differentiation in vitro. Mol Cell Biol 25:1191–1199

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam M, Harris SA, Oursler MJ et al (1995) Identification of a novel TGF-beta-regulated gene encoding a putative zinc finger protein in human osteoblasts. Nucleic Acids Res 23:4907–4912

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam M, Hefferan TE, Tau K et al (1998) Tissue, cell type, and breast cancer stage-specific expression of a TGF-beta inducible early transcription factor gene. J Cell Biochem 68:226–236

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Aizawa K, Matsumura T et al (2005) Vascular implications of the Kruppel-like family of transcription factors. Arterioscler Thromb Vasc Biol 25:1135–1141

    Article  PubMed  CAS  Google Scholar 

  • Tachibana I, Imoto M, Adjei PN et al (1997) Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J Clin Invest 99:2365–2374

    Article  PubMed  CAS  Google Scholar 

  • Tsubone T, Moran SL, Subramaniam M et al (2006) Effect of TGF-beta inducible early gene deficiency on flexor tendon healing. J Orthop Res 24:569–575

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Haldar SM, Lu Y et al (2008) The Kruppel-like factor KLF15 inhibits connective tissue growth factor (CTGF) expression in cardiac fibroblasts. J Mol Cell Cardiol (2008) 45:193–7

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Kurabayashi M, Shimomura Y et al (1999) BTEB2, a Kruppel-like transcription factor, regulates expression of the SMemb/Nonmuscle myosin heavy chain B (SMemb/ NMHC-B) gene. Circ Res 85:182–191

    PubMed  CAS  Google Scholar 

  • Wei D, Kanai M, Huang S et al (2006) Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis 27:23–31

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Gong NL, Bodi I et al (2006) Myocyte enhancer factors 2A and 2C induce dilated cardio-myopathy in transgenic mice. J Biol Chem 281:9152–9162

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, McPherson L, Feng D et al (2007) Kruppel-like transcription factor 13 regulates T lymphocyte survival in vivo. J Immunol 178:5496–5504

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Kawanami, D., Haldar, S.M., Jain, M.K. (2009). Krüppel-like Factors in the Heart. In: Nagai, R., Friedman, S.L., Kasuga, M. (eds) The Biology of Krüppel-like Factors. Springer, Tokyo. https://doi.org/10.1007/978-4-431-87775-2_13

Download citation

Publish with us

Policies and ethics