Skip to main content

Locomotion-related Femoral Trabecular Architectures in Primates — High Resolution Computed Tomographies and Their Implications for Estimations of Locomotor Preferences of Fossil Primates

  • Chapter
Book cover Anatomical Imaging

Abstract

Bones and teeth are often the only preserved items of extinct animals. Soft tissue remnants, stomach contents or tracks are only preserved under specific embedding and fossilization conditions. As palaeontology seeks to understand how extinct creatures appeared and existed, fossil bone provides the best source of information for reconstructions of fossil species. Additional information about the ecology of extinct animals may be gained from the embedding sediment and associated plant fossils. Since the beginning of palaeontology, the form and locomotor features of extinct animals were inferred from the external characteristics and proportions of their bones. For locomotor studies, their bone surface morphologies and proportions were compared with those of extant animals, with special attention to locomotor relevant features. This kind of comparative analyses may encounter difficulties if the fossil species practiced a unique locomotor pattern which can not be compared with locomotor patterns in extant forms (Day 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler C-P (1998) Knochenkrankheiten. Springer-Verlag, Berlin

    Google Scholar 

  • Andrews P, Harrison T, Delson E, Bernor RL, Martin L (1996) Distribution and biochronology of european and southwest asian Miocene catarrhines, In: Bernor RL, Fahlbusch V, Mittmann H-W (eds) The evolution of western eurasian neogene mammal faunas. Columbia University Press, New York, pp 168–207

    Google Scholar 

  • Begun DR (1992) Phyletic diversity and locomotion in primitive european hominids. Am J Phys Anthropol 87:311–340

    Article  PubMed  CAS  Google Scholar 

  • Biewener AA (1989) Scaling body support in mammals: Limb posture and muscle mechanies. Science 245:45–48

    Article  PubMed  CAS  Google Scholar 

  • Borah B, Gross GJ, Dufresne TE, Smith TS, Cockman MD, Chmielewski PA, Lundy MW, Hartke JJ, Sod EW (2001) Three-dimensional microimaging (Mrul and μCT); finite element modeling, and rapid, prototyping provide unique insight into bone architecture in osteoporosis. Anat Rec (Part B, New Anat) 265:101–110

    Article  CAS  Google Scholar 

  • Borland R (1991) Menschen und Tiere—Bei den Pavianen. ORF

    Google Scholar 

  • Carpenter CR (1934) A field study of the behaviour and social relations of howling monkeys (Alouatra palliata). Comparative Psychology Monographs X. The John Hopkins Press, Baltimore, MD

    Google Scholar 

  • Carpenter CR (1940) A field study in Siam of the behavior and social relations of the gibbon (Hylobates lar), Reprinted in Naturalistic behavior of non-human primates (Carpenter CR, 1964). The Pennsylvania State University Press, University Park, IL

    Google Scholar 

  • Chambers TJ, Evans M, Gardner TN, Turner-Smith A, Chow JWM (1993) Induction of bone formation in rat tail vertebrae by mechanical loading. Bone Miner 20:167–178

    Article  PubMed  CAS  Google Scholar 

  • Collet J-Y, Vienne G (1986–1989a) Die Affen—Neuweltaffen in Südamerika. Bayrischer Rundfunk 1990

    Google Scholar 

  • Collet J-Y, Vienne G (1986–1989b) Die Affen—Paviane und Mantelaffen in Afrika. Bayrischer Rundfunk 1990

    Google Scholar 

  • Compston JE (1994) Connectivity of cancellous bone: assessment and mechanical implications. Bone 15:463–466

    Article  PubMed  CAS  Google Scholar 

  • Dempster DW (1992). Bone remodeling. In: Coe FL, Favus MJ (eds) Disorders of bone and mineral metabolism. Raven Press, New York, pp 355–380

    Google Scholar 

  • Daxner-Höck G (1998) Säugetiere (Mammalia) aus dem Karpat des Korneuburger Beckens—3. Rodentia und Carnicora. Beiträge Paläontol 23:367–407

    Google Scholar 

  • Day MH (1979) The locomotor interpretation of fossil primate postcranial bones, In: Morbeck ME, Preuschoft H, Gomberg N (eds) Environment, behaviour, and morphology: dynamic interactions in primates. Fischer, New York, pp 245–258

    Google Scholar 

  • Duda GN (1996) Influence of muscle forces on the internal loads in the femur during gait. PhD thesis. Technical University Hamburg-Harburg. Shaker Verlag, Aachen

    Google Scholar 

  • Fajardo RJ, Müller R (2001) Three-dimensional analysis of nonhuman primate trabecular architecture using micro-computed tomography. Am J Phys Anthropol 115:327–336

    Article  PubMed  CAS  Google Scholar 

  • Fischer J (1961) Vergleichend-anatomische Untersuchungen über die Hüft-und Oberschenkelmuskulatur von Papio leucophaeus (CUVIER 1807) und Mensch. PhD thesis, Medical Academy Düsseldorf

    Google Scholar 

  • Fleagle JG (1976) Locomotion and posture of the malayan Siamang and implications for hominoid evolution. Folia Primatol 26:245–269

    Article  PubMed  CAS  Google Scholar 

  • Fleagle JG (1980) Locomotion and posture. In: Chivers DJ (ed.) Malayan forest primates. Plenum Press, New York, pp 191–207

    Google Scholar 

  • Fleagle JG (1983). Locomotor adaptations of Oligocene and Miocene hominoids and their phyletic implications. In: Ciochon RL, Corruccini RS (eds) New interpretations of ape and human ancestry. Plenum Press, New York, pp 301–324

    Google Scholar 

  • Franzen JL, Fejfar O, Storch G (2003) First micromammals (mammalia, Soricomorpha) from the Vallesian (Miocene) of Eppelsheim, Rheinhessen (Germany). Senek leth 83:95–102

    Google Scholar 

  • Frost HM, Ferretti JL, Jee WSS (1998) Perspectives: some roles of mechanical usage, muscle strength, and the mechanostat in skeletal physiology, disease, and research. Calcif Tissue Int 62:1–7

    Article  PubMed  CAS  Google Scholar 

  • Goldstein SA, Matthews LS, Kuhn JL, Hollister SJ (1991) Trabecular bone remodeling: an experimental model. J Biomech 24:135–150

    Article  PubMed  Google Scholar 

  • Goodship AE, Lanyon LE, McFie H (1979) Functional adaptation of bone to increased stress. J Bone Joint Surg [Am] 61:539–546

    CAS  Google Scholar 

  • Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The Relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27:375–389

    Article  PubMed  CAS  Google Scholar 

  • Grand TI (1968a) Functional anatomy of the upper limb. Bibl primatol 7:104–125

    Google Scholar 

  • Grand TI (1968b) The functional anatomy of the lower limb of the Howler Monkey (Alouatta caraya), Am J Phys Anthropol 28:163–182

    Article  PubMed  CAS  Google Scholar 

  • Guldberg RE, Hollister SJ (1995) Influence of loafing on the tissue modulus of trabecular bone: a combined experimental and microstructural modeling approach. Adv Bioeng ASME BED-31:157–158

    Google Scholar 

  • Guldberg RE, Caldwell NJ, Guo XE, Goulet RW, Hollister SJ, Goldstein SA (1997a) Mechanical stimulation of tissue repair in the hydraulic bone chamber. J Bone Miner Res 12:1295–1302

    Article  PubMed  CAS  Google Scholar 

  • Guldberg RE, Richards M, Caldwell NJ, Kuelske CL, Goldstein SA (1997b) Trabecular bone adaptation to variations in porous-coated implant topology. J Biomech 30:147–153

    Article  PubMed  CAS  Google Scholar 

  • Günther MM (1989) Funktionsmorphologische Untersuchungen zum Sprungverhalten an mehreren Halbaffenarten. PhD thesis. Free University of Berlin

    Google Scholar 

  • Hall KRL (1962) Numerical data, maintenance activities and locomotion of the wild Chamea Baboon, Papio ursinus. Proc Zool Soc Lond 139:181–220

    Google Scholar 

  • Huiskes R (1997). Simulation of self-organization and functional adaptation in bone. In: Schneider E (ed.) Biomechanik des menschlichen Bewegungsapparates (Der Unfallchirurg/Hefte 261), Springer-Verlag, Berlin, pp 299–320

    Google Scholar 

  • Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–706

    Article  PubMed  CAS  Google Scholar 

  • Krieg H (1928) Schwarze Brüllaffen (Alouatta caraya Humboldt). Tagebuch-Aufzeichnungen auf der Deutschen Chaco-Expedition. Z Saeuget II:119–132

    Google Scholar 

  • Kummer B (1959) Bauprinzipien des Säugerskeletts. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Langdon JH (1986) Functional morphology of the Miocene hominoid foot. Contrib Primatol 22:1–225

    Google Scholar 

  • Lanyon LE (1974) Experimantal support for the trajectorial theory of bone structure. J Bone Joint Surg [Br] 56:160–166

    CAS  Google Scholar 

  • Lanyon LE (1981) Locomotor loading and functional adaptation in limb bones. Symp Zool Soc Lond 48:305–329

    Google Scholar 

  • van der Linden JC, Birkenhäger-Frenkel DH, Verhaar JAN, Weinans H (2001) Trabecular bone’s mechanical properties are affected by its non-uniform mineral distribution. J Biomech 34:1573–1580

    Article  PubMed  Google Scholar 

  • MacLatchy L, Müller R (2002) A comparison of the femoral head and neck trabecular architecture of Galago and Perodictius using micro-computed tomography (μCT). J Hum Evol 43:89–105

    Article  PubMed  Google Scholar 

  • Martill DM (1991) Bones as stones: the contribution of vertebrate remains to the lithologic record. In: Donovan SK (ed.) The process of fossilization. Belhaven Press, London, pp 270–292

    Google Scholar 

  • McHenry H, Corruccini RS (1976) Affinities of tertiary hominoid femora. Folia Primatol 26:139–150

    Article  PubMed  CAS  Google Scholar 

  • McNeill Alexander R (1985) Body support, scaling, and allometry. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional vertebrate morphology. Belknap Press, Cambridge, MA, pp 26–37

    Google Scholar 

  • Morgan EF, Keaveny TM (2001) Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 34:569–577

    Article  PubMed  CAS  Google Scholar 

  • Mullender MG, Huiskes R (1995) Proposal for the regulatory mechanism of Wolff’s law. J Orthop Res 13:503–512

    Article  PubMed  CAS  Google Scholar 

  • Mullender MG, Huiskes R, Weinans H (1994) A physiological approach to the simulation of bone remodeling as a self-organizational control process. J Biomech 27: 1389–1394

    Article  PubMed  CAS  Google Scholar 

  • Müller R, Van Campenhout H, Van Damme B, Van der Perre G, Dequeker J, Hildebrand T, Rüegsegger P (1998) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23:59–66

    Article  PubMed  Google Scholar 

  • Napier JR (1976) Primate locomotion. Oxf Biol Readers 41:3–16

    Google Scholar 

  • Nikolei J (2002) Lokomotionsökologie adulter Hanuman Languren (Semnopithecus entellus) in einem saisonalen Waldhabitat in Ramnagar, Südnepal. PhD thesis, Free University of Berlin

    Google Scholar 

  • Ott SM (1996). Theoretical and methodical approach. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology. Academic Press, San Diego, CA, pp 231–241

    Google Scholar 

  • Parfitt AM (1983). The physiologic and elinic significance of bone histomorphometric data. In: Recker RR (ed.) Bone histomorphometry: techniques and interpretation. CRC Press, Inc, Boca Raton, FL, pp 143–223

    Google Scholar 

  • Pauwels F (1965) Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungs apparates. Springer-Verlag, Heidelberg

    Google Scholar 

  • Pauwels F (1980) Biomechanics of the locomotor apparatus. Springer-Verlag, Heidelberg

    Google Scholar 

  • Platzer W, Kahle W, Leonhardt H (1986) Taschenatias der Anatomie. Thieme Verlag, Stuttgart

    Google Scholar 

  • Preuschoft H (1988) Kleine Menschenaffen oder Gibbons. In: Grzimek B (ed.) Grzimeks Enzyklopädie der Säugetiere. Vol. 2. Kindler Verlag, München, pp 328–356

    Google Scholar 

  • Rafferty KL (1998) Structural design of the femoral neck in primates. J Hum Evol 34:361–383

    Article  PubMed  CAS  Google Scholar 

  • van Rietbergen B, Huiskes R, Eckstein F, Rüegsegger P (2003) Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res 18: 1781–1788

    Article  PubMed  Google Scholar 

  • Rose MD (1994) Quadrupedalism in some Miocene catarrhines. J Hum Evol 26:387–411

    Article  Google Scholar 

  • Ryan TM, Ketcham RA (2002a) Femoral head trabecular bone structure in two omomyid primates. J Hum Evol 42:241–263

    Article  Google Scholar 

  • Ryan TM, Ketcham RA (2002b) The three-dimensional structure of trabecular bone in the femoral head of strepsirrhine primates. J Hum Evol 43:1–26

    Article  PubMed  Google Scholar 

  • Salamone LM, Glynn N, Black D, Epstein RS, Palermo L, Meilahn E, Kuller LH, Cauley JA (1995) Body composition and bone mineral density in premenopausal and early perimenopausal women. J Bone Miner Res 10:1762–1768

    PubMed  CAS  Google Scholar 

  • Scherf H (2007) Locomotion-related femoral trabecular architectures in Primates (Paidopithex rhenanus, Pliopithecus vindobonensis). PhD thesis, Darmstadt University of Technology. http://www.elib.tu-darmstadt.de/diss/000797

  • Scherf H, Koller B, Schrenk F (2005) Locomotion related structures in the femoral trabecular architecture of Primates and Insectivores. Senek biol 85:101–112

    Google Scholar 

  • Simon M, Sauerwein C, Tisenau I, Burdairon S (2001) Felxible 3D-Computertomographie im RayScan 200. DGZfP-Jahrestagung 2001, Zerstöringsfreie Materialprüfung, Berlin 21.–23. Mayi 2001, 20.08.2006. http://www.ndt.net/article/dgzfp01/papers/v49/v49.htm

  • Simons EL, Fleagle J (1973) The history of extinct gibbonlike primates. Gibbon and Siamang 2:121–148

    Google Scholar 

  • Stenström M, Olander B, Letho-Axelius D, Madsen JE, Nordsletten L, Carlsson GA (2000) Bone mineral density and bone structure parameters as predictors of bone strength: as analysis using computerized microtomography and gastrectomy-induced osteopenia in the rat. J Biomech 33:289–297

    Article  PubMed  Google Scholar 

  • Swindler DR, Wood CD (1973) An atlas of primate gross anatomy. University of Washington Press, Seattle

    Google Scholar 

  • Szalay FS, Delson E (1979) Evolutionary history of the primates. Academic Press, New York

    Google Scholar 

  • Tsubota K, Adachi T, Tomita Y (2002) Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state. J Biomech 35:1541–1551

    Article  PubMed  Google Scholar 

  • Vereecke E (2006) The functional morphology and bipedal locomotion of Hylobates lar and its implications for the evolution of hominin bipedalism. PhD thesis, University Antwerpen

    Google Scholar 

  • Vogel C, Winkler P (1988) Schlank-und Stummelaffen. In: Grzimek B (ed.) Grzimeks Enzyklopädie der Säugetiere, Vol. 2. Kindler Verlag, München, pp 296–325

    Google Scholar 

  • Weaver JK, Chalmers J (1966) Cancellous bone: Its strength and changes with aging and an evaluation of some method for measuring its mineral content. J Bone Joint Surg [AM] 48:289–298

    CAS  Google Scholar 

  • Welker C, Schäfer-Witt C (1988) Kapuzinerartige. In: Grzimek B (ed.) Grzimeks Enzyklopädie der Säugetiere, Vol. 2, Kindler Verlag, München, pp 122–177

    Google Scholar 

  • Welten DC, Kemper HCG, Post GB, van Mechelen W, Twisk J, Lips P, Teule GJ (1994) Weight-bearing activity during youth is a more important factor for peak bone mass than calcium intake. J Bone Miner Res 9:1089–1096

    Article  PubMed  CAS  Google Scholar 

  • Whalen RT, Carter DR, Steele CR (1988) Influence of physical activity on the regulation of bone density. J Biomech 21:825–837

    Article  PubMed  CAS  Google Scholar 

  • Whitehouse WJ, Dyson ED (1974) Seanning electron microscope studies of trabecular bone in the proximal end of the human femur. J Anat 118:417–444

    PubMed  CAS  Google Scholar 

  • Whitehouse WJ, Dyson ED, Jackson CK (1971) The scanning electron microscope in studies of trabecular bone from a human vertebral body. J Anat 108:481–496

    PubMed  CAS  Google Scholar 

  • Williams JL, Lewis JL (1982) Properties and an anisotropic model of cancelous bone from the proximal tibial epithysis. J Biomech Eng 104:50–56

    Article  PubMed  CAS  Google Scholar 

  • Wolff J (1892) Das Gesetz der Transformation der Knochen. Schattauer, Stuttgart; Reprint 1991, Hirschwald, Berlin

    Google Scholar 

  • Zapfe H (1960) Die Primatenfunde aus der miozänen Spaltenfüllung von Neudorf an der March (Děvínská Nová Ves), Tschechoslowakei. Schweiz Palaeontol Abh 78:1–293

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Scherf, H. (2008). Locomotion-related Femoral Trabecular Architectures in Primates — High Resolution Computed Tomographies and Their Implications for Estimations of Locomotor Preferences of Fossil Primates. In: Endo, H., Frey, R. (eds) Anatomical Imaging. Springer, Tokyo. https://doi.org/10.1007/978-4-431-76933-0_4

Download citation

Publish with us

Policies and ethics