Skip to main content

Abstract

There are two forms of immune responses, innate and adaptive. Individuals from species capable of innate immune responses possess limited repertoires of receptors dedicated to this task. Innate receptors recognizes either stress-induced self-molecules (as exemplified by the NKG2D receptor, see Chapter 2), or bacterial, viral, or protozoan components that are difficult to mutate without an impact on pathogen replicative capacity (as exemplified by the Toll-like receptors, see Chapter 1). The specificity of these receptors is encoded in the germline, and although their expression may be restricted to a certain cell type, they are not clonally distributed (reviewed in Beutler 2003). Most individuals within a species capable of innate immune responses share very similar repertoires of microbial sensors (Pisitkun et al. 2006). Although the ligands of the Toll-like receptors were initially defined as “pathogen-associated molecular patterns,” it should be stressed that in the case of bacteria these ligands are not exclusively derived from pathogens. Therefore, sensors of innate immunity such as Toll-like receptors do not distinguish microbial commensals from pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abi-Rached L, Parham P (2005) Natural selection drives recurrent formation of activating killer cell immunoglobulin-like receptor and Ly49 from inhibitory homologues. J Exp Med 201:1319–1332

    PubMed  CAS  Google Scholar 

  • Aguado E, Richelme S, Nunez-Cruz S, Miazek A, Mura AM, Richelme M, Guo XJ, Sainty D, He HT, Malissen B, Malissen M (2002) Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296:2036–2040

    PubMed  CAS  Google Scholar 

  • Allison TJ, Winter CC, Fournie JJ, Bonneville M, Garboczi DN (2001) Structure of a human gammadelta T-cell antigen receptor. Nature 411:820–824

    PubMed  CAS  Google Scholar 

  • Altan-Bonnet G, Germain RN (2005) Modeling T-cell antigen discrimination based on feedback control of digital ERK responses. PLoS Biol 3:e356

    PubMed  Google Scholar 

  • Altfeld M, Allen TM (2006) Hitting HIV where it hurts: an alternative approach to HIV vaccine design. Trends Immunol 27:504–510

    PubMed  CAS  Google Scholar 

  • Baker BM, Turner RV, Gagnon SJ, Wiley DC, Biddison WE (2001) Identification of a crucial energetic footprint on the alpha1 helix of human histocompatibility leukocyte antigen (HLA)-A2 that provides functional interactions for recognition by tax peptide/HLA-A2-specific T-cell receptors. J Exp Med 193:551–562

    PubMed  CAS  Google Scholar 

  • Bankovich AJ, Garcia KC (2003) Not just any T-cell receptor will do. Immunity 18:7–11

    PubMed  CAS  Google Scholar 

  • Batalia MA, Collins EJ (1997) Peptide binding by class I and class II MHC molecules. Biopolymers 43:281–302

    PubMed  CAS  Google Scholar 

  • Bendelac A, Bonneville M, Kearney JF (2001) Autoreactivity by design: innate B and T lymphocytes. Nat Rev Immunol 1:177–186

    PubMed  CAS  Google Scholar 

  • Beutler B (2003) Not “molecular patterns” but molecules. Immunity 19:155–156

    PubMed  CAS  Google Scholar 

  • Bonasio R, Scimone ML, Schaerli P, Grabie N, Lichtman AH, von Andrian UH (2006) Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat Immunol 7:1092–1100

    PubMed  CAS  Google Scholar 

  • Bongrand P, Malissen B (1998) Quantitative aspects of T-cell recognition: from within the antigen-presenting cell to within the T cell. Bioessays 20:412–422

    PubMed  CAS  Google Scholar 

  • Boniface JJ, Reich Z, Lyons DS, Davis MM (1999) Thermodynamics of T-cell receptor binding to peptide-MHC: evidence for a general mechanism of molecular scanning. Proc Natl Acad Sci USA 96:11446–11451

    PubMed  CAS  Google Scholar 

  • Borg NA, Ely LK, Beddoe T, Macdonald WA, Reid HH, Clements CS, Purcell AW, Kjer-Nielsen L, Miles JJ, Burrows SR, et al (2005) The CDR3 regions of an immunodominant T-cell receptor dictate the “energetic landscape” of peptide-MHC recognition. Nat Immunol 6:171–180

    PubMed  CAS  Google Scholar 

  • Brdicka T, Kadlecek TA, Roose JP, Pastuszak AW, Weiss A (2005) Intramolecular regulatory switch in ZAP-70: analogy with receptor tyrosine kinases. Mol Cell Biol 25:4924–4933

    PubMed  CAS  Google Scholar 

  • Burrows SR, Rossjohn J, McCluskey J (2006) Have we cut ourselves too short in mapping CTL epitopes? Trends Immunol 27:11–16

    PubMed  CAS  Google Scholar 

  • Buslepp J, Wang H, Biddison WE, Appella E. JE C (2003) A correlation between TCR V alpha docking on MHC and CD8 dependence: Implications for T-cell selection. Immunity 19:595–606

    PubMed  CAS  Google Scholar 

  • Call ME, Pyrdol J, Wiedmann M, Wucherpfennig KW (2002) The organizing principle in the formation of the T-cell receptor-CD3 complex. Cell 111:967–979

    PubMed  CAS  Google Scholar 

  • Call ME, Schnell JR, Xu C, Lutz RA, Chou JJ, Wucherpfennig KW (2006) The structure of the zetazeta transmembrane dimer reveals features essential for its assembly with the T-cell receptor. Cell 127:355–368

    PubMed  CAS  Google Scholar 

  • Cebecauer M, Guillaume P, Mark S, Michielin O, Boucheron N, Bezard M, Meyer BH, Segura JM, Vogel H, Luescher IF (2005) CD8+ cytotoxic T lymphocyte activation by soluble major histocompatibility complex-peptide dimers. J Biol Chem 280:23820–23828

    PubMed  CAS  Google Scholar 

  • Chang HC, Tan K, Ouyang J, Parisini E, Liu JH, Le Y, Wang X, Reinherz EL, Wang JH (2005) Structural and mutational analyses of a CD8alphabeta heterodimer and comparison with the CD8alphaalpha homodimer. Immunity 23:661–671

    PubMed  CAS  Google Scholar 

  • Chen JL, Stewart-Jones G, Bossi G, Lissin NM, Wooldridge L, Choi EM, Held G, Dunbar PR, Esnouf RM, Sami M, et al (2005) Structural and kinetic basis for heightened immunogenicity of T-cell vaccines. J Exp Med 201:1243–1255

    PubMed  CAS  Google Scholar 

  • Chiesa S, Mingueneau M, Fuseri N, Malissen B, Raulet DH, Malissen M, Vivier E, Tomasello E (2006) Multiplicity and plasticity of natural killer cell signaling pathways. Blood 107:2364–2372

    PubMed  CAS  Google Scholar 

  • Choudhuri K, Kearney A, Bakker TR, van der Merwe PA (2005a) Immunology: how do T cells recognize antigen? Curr Biol 15:R382–385

    PubMed  CAS  Google Scholar 

  • Choudhuri K, Wiseman D, Brown MH, Gould K, van der Merwe PA (2005b) T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436:578–582

    PubMed  CAS  Google Scholar 

  • Coutinho A (2005) The Le Douarin phenomenon: a shift in the paradigm of developmental self-tolerance. Int J Dev Biol 49:131–136

    PubMed  CAS  Google Scholar 

  • Davis SJ, van der Merwe PA (2006) The kinetic-segregation model: TCR triggering and beyond. Nat Immunol 7:803–809

    PubMed  CAS  Google Scholar 

  • Davis-Harrison RL, Armstrong KM, Baker BM (2005) Two different T-cell receptors use different thermodynamic strategies to recognize the same peptide/MHC ligand. J Mol Biol 346:533–550

    PubMed  CAS  Google Scholar 

  • Davodeau F, Difilippantonio M, Roldan E, Malissen M, Casanova JL, Couedel C, Morcet JF, Merkenschlager M, Nussenzweig A, Bonneville M, Malissen B (2001) The tight interallelic positional coincidence that distinguishes T-cell receptor Jalpha usage does not result from homologous chromosomal pairing during ValphaJalpha rearrangement. EMBO J 20:4717–4729

    PubMed  CAS  Google Scholar 

  • Delon J, Gregoire C, Malissen B, Darche S, Lemaitre F, Kourilsky P, Abastado JP, Trautmann A (1998) CD8 expression allows T-cell signaling by monomeric peptide-MHC complexes. Immunity 9:467–473

    PubMed  CAS  Google Scholar 

  • Derbinski J, Gabler J, Brors B, Tierling S, Jonnakuty S, Hergenhahn M, Peltonen L, Walter J, Kyewski B (2005) Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med 202:33–45

    PubMed  CAS  Google Scholar 

  • Diefenbach A, Tomasello E, Lucas M, Jamieson AM, Hsia JK, Vivier E, Raulet DH (2002) Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat Immunol 3:1142–1149

    PubMed  CAS  Google Scholar 

  • Ding YH, Smith KJ, Garboczi DN, Utz U, Biddison WE, Wiley DC (1998) Two human T-cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity 8:403–411

    PubMed  CAS  Google Scholar 

  • Donermeyer DL, Weber KS, Kranz DM, Allen PM (2006) The study of high-affinity TCRs reveals duality in T-cell recognition of antigen: specificity and degeneracy. J Immunol 177: 6911–6919

    PubMed  CAS  Google Scholar 

  • Doucey MA, Goffin L, Naeher D, Michielin O, Baumgartner P, Guillaume P, Palmer E, Luescher IF (2003a) CD3 delta establishes a functional link between the T-cell receptor and CD8. J Biol Chem 278:3257–3264

    PubMed  CAS  Google Scholar 

  • Doucey MA, Legler DF, Faroudi M, Boucheron N, Baumgaertner P, Naeher D, Cebecauer M, Hudrisier D, Ruegg C, Palmer E, et al (2003b) The beta1 and beta3 integrins promote T-cell receptor-mediated cytotoxic T lymphocyte activation. J Biol Chem 278:26983–26991

    PubMed  CAS  Google Scholar 

  • Ely LK, Beddoe T, Clements CS, Matthews JM, Purcell AW, Kjer-Nielsen L, McCluskey J, Rossjohn J (2006) Disparate thermodynamics governing T-cell receptor-MHC-I interactions implicate extrinsic factors in guiding MHC restriction. Proc Natl Acad Sci USA 103:6641–6646

    PubMed  CAS  Google Scholar 

  • Feng J, Garrity D, Call ME, Moffett H, Wucherpfennig KW (2005) Convergence on a distinctive assembly mechanism by unrelated families of activating immune receptors. Immunity 22:427–438

    PubMed  CAS  Google Scholar 

  • Firat H, Cochet M, Rohrlich PS, Garcia-Pons F, Darche S, Danos O, Lemonnier FA, Langlade-Demoyen P (2002) Comparative analysis of the CD8(+) T-cell repertoires of H-2 class I wild-type/HLA-A2.1 and H-2 class I knockout/HLA-A2.1 transgenic mice. Int Immunol 14:925–934

    PubMed  CAS  Google Scholar 

  • Fontenot JD, Rudensky AY (2005) A well adapted regulatory contrivance: regulatory T-cell development and the forkhead family transcription factor Foxp3. Nat Immunol 6:331–337

    PubMed  CAS  Google Scholar 

  • Gagnon SJ, Borbulevych OY, Davis-Harrison RL, Baxter TK, Clemens JR, Armstrong KM, Turner RV, Damirjian M, Biddison WE, Baker BM (2005) Unraveling a hotspot for TCR recognition on HLA-A2: evidence against the existence of peptide-independent TCR binding determinants. J Mol Biol 353:556–573

    PubMed  CAS  Google Scholar 

  • Garcia KC, Adams EJ (2005) How the T-cell receptor sees antigen-a structural view. Cell 122:333–336

    PubMed  CAS  Google Scholar 

  • Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Zhu HJ, Walker F, Frenkel MJ, Hoyne PA, et al (2002) Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell 110:763–773

    PubMed  CAS  Google Scholar 

  • Gasser S, Orsulic S, Brown EJ, Raulet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190

    PubMed  CAS  Google Scholar 

  • Ge Q, Holler PD, Mahajan VS, Nuygen T, Eisen HN, Chen J (2006) Development of CD4+ T cells expressing a nominally MHC class I-restricted T-cell receptor by two different mechanisms. Proc Natl Acad Sci USA 103:1822–1827

    PubMed  CAS  Google Scholar 

  • Germain RN (1990) Immunology. Making a molecular match. Nature 344:19–22

    CAS  Google Scholar 

  • Germain RN, Stefanova I (1999) The dynamics of T-cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annu Rev Immunol 17:467–522

    PubMed  CAS  Google Scholar 

  • Gil D, Schamel WW, Montoya M, Sanchez-Madrid F, Alarcon B (2002) Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T-cell receptor signaling and synapse formation. Cell 109:901–912

    PubMed  CAS  Google Scholar 

  • Gil D, Schrum AG, Alarcon B, Palmer E (2005) T-cell receptor engagement by peptide-MHC ligands induces a conformational change in the CD3 complex of thymocytes. J Exp Med 201:517–522

    PubMed  CAS  Google Scholar 

  • Goldrath AW, Bevan MJ (1999) Selecting and maintaining a diverse T-cell repertoire. Nature 402:255–262

    PubMed  CAS  Google Scholar 

  • Gonzalez PA, Carreno LJ, Coombs D, Mora JE, Palmieri E, Goldstein B, Nathenson SG, Kalergis AM (2005) T-cell receptor binding kinetics required for T-cell activation depend on the density of cognate ligand on the antigen-presenting cell. Proc Natl Acad Sci USA 102:4824–4829

    PubMed  CAS  Google Scholar 

  • Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG (2005) Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435:590–597

    PubMed  CAS  Google Scholar 

  • Goulder PJ, Watkins DI (2004) HIV and SIV CTL escape: implications for vaccine design. Nat Rev Immunol 4:630–640

    PubMed  CAS  Google Scholar 

  • Guy-Grand D, Rocha B, Mintz P, Malassis-Seris M, Selz F, Malissen B, Vassalli P (1994) Different use of T-cell receptor transducing modules in two populations of gut intraepithelial lymphocytes are related to distinct pathways of T-cell differentiation. J Exp Med 180:673–679

    PubMed  CAS  Google Scholar 

  • Hahn M, Nicholson MJ, Pyrdol J, Wucherpfennig KW (2005) Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T-cell receptor. Nat Immunol 6:490–496

    PubMed  CAS  Google Scholar 

  • Hayes SM, Love PE (2002) Distinct structure and signaling potential of the gamma delta TCR complex. Immunity 16:827–838

    PubMed  CAS  Google Scholar 

  • Hayes SM, Love PE (2006) Stoichiometry of the murine {gamma}{delta} T-cell receptor. J Exp Med 203:47–52

    PubMed  CAS  Google Scholar 

  • Hennecke J, Wiley DC (2002) Structure of a complex of the human alpha/beta T-cell receptor (TCR) HA1.7, influenza hemagglutinin peptide, and major histocompatibility complex class II molecule, HLA-DR4 (DRA*0101 and DRB1*0401): insight into TCR cross-restriction and alloreactivity. J Exp Med 195:571–581

    PubMed  CAS  Google Scholar 

  • Hogquist KA, Baldwin TA, Jameson SC (2005) Central tolerance: learning self-control in the thymus. Nat Rev Immunol 5:772–782

    PubMed  CAS  Google Scholar 

  • Holler PD, Kranz DM (2003) Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T-cell activation. Immunity 18:255–264

    PubMed  CAS  Google Scholar 

  • Holler PD, Chlewicki LK, Kranz DM (2003) TCRs with high affinity for foreign pMHC show self-reactivity. Nat Immunol 4:55–62

    PubMed  CAS  Google Scholar 

  • Housset D, Malissen B (2003) What do TCR-pMHC crystal structures teach us about MHC restriction and alloreactivity? Trends Immunol 24:429–437

    PubMed  CAS  Google Scholar 

  • Hulsmeyer M, Chames P, Hillig RC, Stanfield RL, Held G, Coulie PG, Alings C, Wille G, Saenger W, Uchanska-Ziegler B, et al (2005) A major histocompatibility complex-peptide-restricted antibody and t cell receptor molecules recognize their target by distinct binding modes: crystal structure of human leukocyte antigen (HLA)-A1-MAGE-A1 in complex with FAB-HYB3. J Biol Chem 280:2972–2980

    PubMed  Google Scholar 

  • Huseby ES, White J, Crawford F, Vass T, Becker D, Pinilla C, Marrack P, Kappler JW (2005) How the T-cell repertoire becomes peptide and MHC specific. Cell 122:247–260

    PubMed  CAS  Google Scholar 

  • Huseby ES, Crawford F, White J, Marrack P, Kappler JW (2006) Interface-disrupting amino acids establish specificity between T-cell receptors and complexes of major histocompatibility complex and peptide. Nat Immunol 7:1191–1199

    PubMed  CAS  Google Scholar 

  • James LC, Tawfik DS (2003) The specificity of cross-reactivity: promiscuous antibody binding involves specific hydrogen bonds rather than nonspecific hydrophobic stickiness. Protein Sci 12:2183–2193

    PubMed  CAS  Google Scholar 

  • Jerne NK (1971) The somatic generation of immune recognition. Eur J Immunol 1:1–9

    PubMed  CAS  Google Scholar 

  • Kedl RM, Kappler JW, Marrack P (2003) Epitope dominance, competition and T-cell affinity maturation. Curr Opin Immunol 15:120–127

    PubMed  CAS  Google Scholar 

  • Kellenberger C, Roussel A, Malissen B (2005) The H-2Kk MHC peptide-binding groove anchors the backbone of an octameric antigenic peptide in an unprecedented mode. J Immunol 175:3819–3825

    PubMed  CAS  Google Scholar 

  • Kjer-Nielsen L, Clements CS, Purcell AW, Brooks AG, Whisstock JC, Burrows SR, McCluskey J, Rossjohn J (2003) A structural basis for the selection of dominant alphabeta T-cell receptors in antiviral immunity. Immunity 18:53–64

    PubMed  CAS  Google Scholar 

  • Klein L, Klugmann M, Nave KA, Tuohy VK, Kyewski B (2000) Shaping of the autoreactive Tcell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nat Med 6:56–61

    PubMed  CAS  Google Scholar 

  • Krogsgaard M, Davis MM (2005) How T cells “see” antigen. Nat Immunol 6:239–245

    PubMed  CAS  Google Scholar 

  • Krogsgaard M, Prado N, Adams EJ, He XL, Chow DC, Wilson DB, Garcia KC, Davis MM (2003) Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T-cell activation. Mol Cell 12:1367–1378

    PubMed  CAS  Google Scholar 

  • Krogsgaard M, Li QJ, Sumen C, Huppa JB, Huse M, Davis MM (2005) Agonist/endogenous peptide-MHC heterodimers drive T-cell activation and sensitivity. Nature 434:238–243

    PubMed  CAS  Google Scholar 

  • La Gruta NL, Liu H, Dilioglou S, Rhodes M, Wiest DL, Vignali DA (2004) Architectural changes in the TCR:CD3 complex induced by MHC:peptide ligation. J Immunol 172:3662–3669

    PubMed  Google Scholar 

  • Lang HL, Jacobsen H, Ikemizu S, Andersson C, Harlos K, Madsen L, Hjorth P, Sondergaard L, Svejgaard A, Wucherpfennig K, et al (2002) A functional and structural basis for TCR crossreactivity in multiple sclerosis. Nat Immunol 3:940–943

    PubMed  CAS  Google Scholar 

  • Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    PubMed  CAS  Google Scholar 

  • Laugel B, Boulter JM, Lissin N, Vuidepot A, Li Y, Gostick E, Crotty LE, Douek DC, Hemelaar J, Price DA, et al (2005) Design of soluble recombinant T-cell receptors for antigen targeting and T-cell inhibition. J Biol Chem 280:1882–1892

    PubMed  CAS  Google Scholar 

  • Lee JK, Stewart-Jones G, Dong T, Harlos K, Di Gleria K, Dorrell L, Douek DC, van der Merwe PA, Jones EY, McMichael AJ (2004) T-cell cross-reactivity and conformational changes during TCR engagement. J Exp Med 200:1455–1466

    PubMed  CAS  Google Scholar 

  • Li Y, Huang Y, Lue J, Quandt JA, Martin R, Mariuzza RA (2005a) Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. EMBO J 24:2968–2979

    PubMed  CAS  Google Scholar 

  • Li Y, Moysey R, Molloy PE, Vuidepot AL, Mahon T, Baston E, Dunn S, Liddy N, Jacob J, Jakobsen BK, Boulter JM (2005b) Directed evolution of human T-cell receptors with picomolar affinities by phage display. Nat Biotechnol 23:349–354

    PubMed  CAS  Google Scholar 

  • Lin SY, Ardouin L, Gillet A, Malissen M, Malissen B (1997) The single positive T cells found in CD3-zeta/eta-/-mice overtly react with self-major histocompatibility complex molecules upon restoration of normal surface density of T-cell receptor-CD3 complex. J Exp Med 185:707–715

    PubMed  CAS  Google Scholar 

  • Luescher IF, Vivier E, Layer A, Mahiou J, Godeau F, Malissen B, Romero P (1995) CD8 modulation of T-cell antigen receptor-ligand interactions on living cytotoxic T lymphocytes. Nature 373:353–356

    PubMed  CAS  Google Scholar 

  • Macdonald WA, Purcell AW, Mifsud NA, Ely LK, Williams DS, Chang L, Gorman JJ, Clements CS, Kjer-Nielsen L, Koelle DM, et al (2003) A naturally selected dimorphism within the HLA-B44 supertype alters class I structure, peptide repertoire, and T-cell recognition. J Exp Med 198:679–691

    PubMed  CAS  Google Scholar 

  • Malissen B (1996) Immunology. Two faces are better than one. Nature 384:518–519

    PubMed  CAS  Google Scholar 

  • Malissen B (2003a) An evolutionary and structural perspective on T-cell antigen receptor function. Immunol Rev 191:7–27

    PubMed  CAS  Google Scholar 

  • Malissen B (2003b) Glimpses at TCR trans-species crossreactivity. Immunity 19:463–464

    PubMed  CAS  Google Scholar 

  • Malissen B, Ardouin L, Lin SY, Gillet A, Malissen M (1999) Function of the CD3 subunits of the pre-TCR and TCR complexes during T-cell development. Adv Immunol 72:103–148

    PubMed  CAS  Google Scholar 

  • Malissen B, Aguado E, Malissen M (2005) Role of the LAT adaptor in T-cell development and Th2 differentiation. Adv Immunol 87:1–25

    PubMed  CAS  Google Scholar 

  • Mason D (1998) A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today 19:395–404

    PubMed  CAS  Google Scholar 

  • Mathis D, Benoist C (2004) Back to central tolerance. Immunity 20:509–516

    PubMed  CAS  Google Scholar 

  • Maynard J, Petersson K, Wilson DH, Adams EJ, Blondelle SE, Boulanger MJ, Wilson DB, Garcia KC (2005) Structure of an autoimmune T-cell receptor complexed with class II peptide-MHC: insights into MHC bias and antigen specificity. Immunity 22:81–92

    PubMed  CAS  Google Scholar 

  • Mazza C, Auphan-Anezin N, Gregoire C, Guimezanes A, Kellenberger C, Roussel A, Kearney A, van der Merwe PA, Schmitt-Verhulst AM, Malissen B (2007) How much can a T-cell receptor adapt to structurally distinct antigenic peptides? EMBO J 26:1972–1983

    PubMed  CAS  Google Scholar 

  • McFarland BJ, Kortemme T, Yu SF, Baker D, Strong RK (2003) Symmetry recognizing asymmetry: analysis of the interactions between the C-type lectin-like immunoreceptor NKG2D and MHC class I-like ligands. Structure 11:411–422

    PubMed  CAS  Google Scholar 

  • Merkenschlager M, Graf D, Lovatt M, Bommhardt U, Zamoyska R, Fisher AG (1997) How many thymocytes audition for selection? J Exp Med 186:1149–1158

    PubMed  CAS  Google Scholar 

  • Miley MJ, Messaoudi I, Metzner BM, Wu Y, Nikolich-Zugich J, Fremont DH (2004) Structural basis for the restoration of TCR recognition of an MHC allelic variant by peptide secondary anchor substitution. J Exp Med 200:1445–1454

    PubMed  CAS  Google Scholar 

  • Mitra AK, Celia H, Ren G, Luz JG, Wilson IA, Teyton L (2004) Supine orientation of a murine MHC class I molecule on the membrane bilayer. Curr Biol 14:718–724

    PubMed  CAS  Google Scholar 

  • Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S (2002) Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110:775–787

    PubMed  CAS  Google Scholar 

  • Pancer Z, Cooper MD (2006) The evolution of adaptive immunity. Annu Rev Immunol 24:497–518

    PubMed  CAS  Google Scholar 

  • Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland S (2006) Autoreactive B-cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312:1669–1672

    PubMed  CAS  Google Scholar 

  • Randriamampita C, Boulla G, Revy P, Lemaitre F, Trautmann A (2003) T-cell adhesion lowers the threshold for antigen detection. Eur J Immunol 33:1215–1223

    PubMed  CAS  Google Scholar 

  • Raz E (2007) Organ-specifi c regulation of innate immunity. Nat Immunol 8:3–4

    PubMed  CAS  Google Scholar 

  • Reinherz EL, Tan K, Tang L, Kern P, Liu J, Xiong Y, Hussey RE, Smolyar A, Hare B, Zhang R, et al (1999) The crystal structure of a T-cell receptor in complex with peptide and MHC class II. Science 286:1913–1921

    PubMed  CAS  Google Scholar 

  • Reiser JB, Darnault C, Guimezanes A, Grégoire C, Mosser T, Schmitt-Verhulst, A.-M., Fontecilla-Camps JC, Malissen B, Housset D, Mazza G (2000) Crystal structure of a T-cell receptor bound to an allogeneic MHC molecule. Nat Immunol 1:291–297

    PubMed  CAS  Google Scholar 

  • Reiser JB, Grégoire C, Darnault C, Mosser T, Guimezanes A, Schmitt-Verhulst AM, Fontecilla-Camps JC, Mazza G, Malissen B, Housset D (2002) A T-cell receptor CDR3beta loop undergoes conformational changes of unprecedented magnitude upon binding to a peptide/MHC class I complex. Immunity 16:345–354

    PubMed  CAS  Google Scholar 

  • Reiser JB, Darnault C, Gregoire C, Mosser T, Mazza G, Kearney A, Van Der Merwe PA, Fontecilla-Camps JC, Housset D, Malissen B (2003) CDR3 loop flexibility contributes to the degeneracy of TCR recognition. Nat Immunol 4:241–247

    PubMed  CAS  Google Scholar 

  • Renard V, Romero P, Vivier E, Malissen B, Luescher IF (1996) CD8 beta increases CD8 coreceptor function and participation in TCR-ligand binding. J Exp Med 184:2439–2444

    PubMed  CAS  Google Scholar 

  • Rudolph MG, Wilson IA (2002) The specifi city of TCR/pMHC interaction. Curr Opin Immunol 14:52–65

    PubMed  CAS  Google Scholar 

  • Rudolph MG, Stanfield RL, Wilson IA (2006) How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol 24:419–466

    PubMed  CAS  Google Scholar 

  • Schamel WW, Arechaga I, Risueno RM, van Santen HM, Cabezas P, Risco C, Valpuesta JM, Alarcon B (2005) Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J Exp Med 202:493–503

    PubMed  CAS  Google Scholar 

  • Scharenberg AM, Lin S, Cuenod B, Yamamura H, Kinet JP (1995) Reconstitution of interactions between tyrosine kinases and the high affi nity IgE receptor which are controlled by receptor clustering. EMBO J 14:3385–3394

    PubMed  CAS  Google Scholar 

  • Schumacher TN, Ploegh HL (1994) Are MHC-bound peptides a nuisance for positive selection? Immunity 1:721–723

    PubMed  CAS  Google Scholar 

  • Selin LK, Cornberg M, Brehm MA, Kim SK, Calcagno C, Ghersi D, Puzone R, Celada F, Welsh RM (2004) CD8 memory T cells: cross-reactivity and heterologous immunity. Semin Immunol 16:335–347

    PubMed  CAS  Google Scholar 

  • Shih FF, Allen PM (2004) T cells are not as degenerate as you think, once you get to know them. Mol Immunol 40:1041–1046

    PubMed  CAS  Google Scholar 

  • Spencer DM, Wandless TJ, Schreiber SL, Crabtree GR (1993) Controlling signal transduction with synthetic ligands. Science 262:1019–1024

    PubMed  CAS  Google Scholar 

  • Sporri R, Reis e Sousa C (2002) Self peptide/MHC class I complexes have a negligible effect on the response of some CD8+ T cells to foreign antigen. Eur J Immunol 32:3161–3170

    PubMed  CAS  Google Scholar 

  • Springer TA (1990) Adhesion receptors of the immune system. Nature 346:425–434

    PubMed  CAS  Google Scholar 

  • Stefanova I, Dorfman JR, Germain RN (2002) Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420:429–434

    PubMed  CAS  Google Scholar 

  • Stefanova I, Hemmer B, Vergelli M, Martin R, Biddison WE, Germain RN (2003) TCR ligand discrimination is enforced by competing ERK positive and SHP-1 negative feedback pathways. Nat Immunol 4:248–254

    PubMed  CAS  Google Scholar 

  • Stewart-Jones GB, McMichael AJ, Bell JI, Stuart DI, Jones EY (2003) A structural basis for immunodominant human T-cell receptor recognition. Nat Immunol 4:657–663

    PubMed  CAS  Google Scholar 

  • Stone JD, Stern LJ (2006) CD8 T cells, like CD4 T cells, are triggered by multivalent engagement of TCRs by MHC-peptide ligands but not by monovalent engagement. J Immunol 176:1498–1505

    PubMed  CAS  Google Scholar 

  • Strong RK, McFarland BJ (2004) NKG2D and related immunoreceptors. Adv Protein Chem 68:281–312

    PubMed  CAS  Google Scholar 

  • Sun ZY, Kim ST, Kim IC, Fahmy A, Reinherz EL, Wagner G (2004) Solution structure of the CD3epsilondelta ectodomain and comparison with CD3epsilongamma as a basis for modeling T-cell receptor topology and signaling. Proc Natl Acad Sci USA 101:16867–16872

    PubMed  CAS  Google Scholar 

  • Szymczak AL, Workman CJ, Gil D, Dilioglou S, Vignali KM, Palmer E, Vignali DA (2005) The CD3epsilon proline-rich sequence, and its interaction with Nck, is not required for T-cell development and function. J Immunol 175:270–275

    PubMed  CAS  Google Scholar 

  • Taniguchi T, Takaoka A (2001) A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol 2:378–386

    PubMed  CAS  Google Scholar 

  • Tynan FE, Burrows SR, Buckle AM, Clements CS, Borg NA, Miles JJ, Beddoe T, Whisstock JC, Wilce MC, Silins SL, et al (2005) T-cell receptor recognition of a “super-bulged” major histocompatibility complex class I-bound peptide. Nat Immunol 6:1114–1122

    PubMed  CAS  Google Scholar 

  • Vivier E, Malissen B (2005) Innate and adaptive immunity: specifi cities and signaling hierarchies revisited. Nat Immunol 6:17–21

    PubMed  CAS  Google Scholar 

  • von Boehmer H (2005) Unique features of the pre-T-cell receptor alpha-chain: not just a surrogate. Nat Rev Immunol 5:571–577

    Google Scholar 

  • von Boehmer H, Aifantis I, Gounari F, Azogui O, Haughn L, Apostolou I, Jaeckel E, Grassi F, Klein L (2003) Thymic selection revisited: how essential is it? Immunol Rev 191:62–78

    Google Scholar 

  • Vonakis BM, Haleem-Smith H, Benjamin P, Metzger H (2001) Interaction between the unphosphorylated receptor with high affi nity for IgE and Lyn kinase. J Biol Chem 276:1041–1050

    PubMed  CAS  Google Scholar 

  • Wang JH, Reinherz EL (2002) Structural basis of T-cell recognition of peptides bound to MHC molecules. Mol Immunol 38:1039–1049

    PubMed  CAS  Google Scholar 

  • Wegener AM, Letourneur F, Hoeveler A, Brocker T, Luton F, Malissen B (1992) The T-cell receptor/CD3 complex is composed of at least two autonomous transduction modules. Cell 68:83–95

    PubMed  CAS  Google Scholar 

  • Wilson A, Marechal C, MacDonald HR (2001) Biased V beta usage in immature thymocytes is independent of DJ beta proximity and pT alpha pairing. J Immunol 166:51–57

    PubMed  CAS  Google Scholar 

  • Wu LC, Tuot DS, Lyons DS, Garcia KC, Davis MM (2002) Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature 418:552–556

    PubMed  CAS  Google Scholar 

  • Yachi PP, Ampudia J, Gascoigne NR, Zal T (2005) Nonstimulatory peptides contribute to antigeninduced CD8-T-cell receptor interaction at the immunological synapse. Nat Immunol 6:785–792

    PubMed  CAS  Google Scholar 

  • Yamasaki S, Ishikawa E, Sakuma M, Ogata K, Sakata-Sogawa K, Hiroshima M, Wiest DL, Tokunaga M, Saito T (2006) Mechanistic basis of pre-T-cell receptor-mediated autonomous signaling critical for thymocyte development. Nat Immunol 7:67–75

    PubMed  CAS  Google Scholar 

  • Yokoyama WM (2006) Contact hypersensitivity: not just T cells! Nat Immunol 7:437–439

    PubMed  CAS  Google Scholar 

  • Zerrahn J, Held W, Raulet DH (1997) The MHC reactivity of the T-cell repertoire prior to positive and negative selection. Cell 88:627–636

    PubMed  CAS  Google Scholar 

  • Zinkernagel RM (2002) Uncertainties—discrepancies in immunology. Immunol Rev 185:103–125

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Mazza, C., Malissen, B. (2008). How Do T Cells Discriminate Self from Nonself?. In: Kitamura, D. (eds) How the Immune System Recognizes Self and Nonself. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73884-8_5

Download citation

Publish with us

Policies and ethics