Skip to main content

Recent Progress on Paired Immunoglobulin-Like Receptors

  • Chapter
  • 936 Accesses

Abstract

Almost 10 years ago the Takai and Kubagawa laboratories independently identified the paired immunoglobulin-like receptors (PIRs) in mice based on limited homology with the human Fcα receptor/CD89 (Hayami et al. 1997; Kubagawa et al. 1997). Two PIR isoforms were identified on the basis of their signaling properties as activating (PIR-A) and inhibitory (PIR-B) types. Pir is a multigene family located on the proximal end of mouse chromosome 7 (Kubagawa et al. 1997; Tun et al. 2003; Yamashita et al. 1998a), in a region syntenic with the human chromosome 19q13 where a cluster of structurally related gene families called the leukocyte receptor complex resides. Among these human genes are the closest PIR homologs, the immunoglobulin (Ig)-like transcripts (ILTs) [also called leukocyte Ig-like receptors (LIRs), monocyte/macrophage Ig-like receptors or CD85; see the new LILR nomenclature at www.gene.ucl.ac.uk/nomenclature/genefamily/lilr.html] (Arm et al. 1997; Barten et al. 2001; Colonna et al. 1999; Cosman et al. 1999; Long 1999; Martin et al. 2002; Wagtmann et al. 1997). Paired immunoglobulin-like receptor-A and PIR-B are cell surface glycoproteins with very similar extracellular regions (>92% homology) containing six Ig-like domains, but with structurally and functionally distinct transmembrane and cytoplasmic regions (see Fig. 1). There are multiple PIR-A isoforms (>6), each encoded by a different Pira gene. Paired immunoglobulin-like receptor-As associate non-covalently with the Fc receptor common γ chain (FcRγc), a transmembrane signal transducer that contains immunoreceptor tyrosine-based activation motif (ITAM) “D/ExxYxxL/Ix6–8YxxL/I” (single amino acid code, where x represents any amino acid) in the cytoplasmic tail, to form a cell activation complex (Kubagawa et al. 1999a; Maeda et al. 1998b; Ono et al. 1999; Taylor and McVicar 1999).

Schematic presentation of paired immunoglobulin-like receptor (PIR)-A and PIR-B. Both PIR-A and PIR-B cDNAs encode type I transmembrane proteins consisting of similar extracellular regions with six Ig-like domains, but having distinctive trans-membrane and cytoplasmic regions. The ectodomain has five or six potential sites for N-linked glycosylation (bars with closed circles). The predicted PIR-A has a short cytoplasmic tail and a positively charged arginine (R) residue in the transmembrane segment, which is noncovalently associated with a negatively charged aspartic acid (D) in the transmembrane domain of the disulfi de-linked homodimer of the Fc receptor common γ chain (FcRγc) carrying immunoreceptor tyrosine-based activation motifs (ITAMs). In contrast, the PIR-B protein has a typical uncharged transmembrane region and a long cytoplasmic tail with immunoreceptor tyrosine-based inhibitory motifs (ITIMs).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen RL, Raine T, Haude A, Trowsdale J, Wilson MJ (2001) Leukocyte receptor complexencoded immunomodulatory receptors show differing specificity for alternative HLA-B27 structures. J Immunol 167:5543–5547

    PubMed  CAS  Google Scholar 

  • Arm JP, Nwankwo C, Austen KF (1997) Molecular identification of a novel family of human Ig superfamily members that possess immunoreceptor tyrosine-based inhibition motifs and homology to the mouse gp49B1 inhibitory receptor. J Immunol 159:2342–2349

    PubMed  CAS  Google Scholar 

  • Barten R, Torkar M, Haude A, Trowsdale J, Wilson MJ (2001) Divergent and convergent evolution of NK-cell receptors. Trends Immunol 22:52–57

    Article  PubMed  CAS  Google Scholar 

  • Bird LA, Peh CA, Kollnberger S, Sun MY, Elliott T, McMichael A, Bowness P (2003) The spondyloarthrropathy-associated class I allele HLA-B27 forms homodimers both within the ER and at the cell surface. Eur J Immunol 33:748–759

    Article  PubMed  CAS  Google Scholar 

  • Bléry M, Kubagawa H, Chen CC, Vély F, Cooper MD, Vivier E (1998) The paired Ig-like receptor PIR-B is an inhibitory receptor that recruits the protein-tyrosine phosphatase SHP-1. Proc Natl Acad Sci USA 95:2446–2451

    Article  PubMed  Google Scholar 

  • Chan VW, Meng F, Soriano P, DeFranco AL, Lowell CA (1997) Characterization of the B lymphocyte populations in Lyn-deficient mice and the role of Lyn in signal initiation and down-regulation. Immunity 7:69–81

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, Ciubotariu R, Manavalan JS, Yuan J, Colovai AI, Piazza F, Lederman S, Colonna M, Cortesini R, Dalla-Favera R, Suciu-Foca N (2002) Tolerization of dendritic cells by Ts cells: the critical role of inhibitory receptors ILT3 and ILT4. Nat Immunol 3:237–243

    Article  PubMed  CAS  Google Scholar 

  • Chapman TL, Heikema AP, Bjorkman PJ (1999) The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18. Immunity 11:603–613

    Article  PubMed  CAS  Google Scholar 

  • Chen CC, Kang DW, Cooper MD, Kubagawa H (2002) Mast cell regulation via the paired immunoglobulin-like receptor PIR-B. Immunol Res 26:191–197

    Article  PubMed  CAS  Google Scholar 

  • Colonna M, Nakajima H, Navarro F, Lopez-Botet M (1999) A novel family of Ig-like receptors for HLA class I molecules that modulate function of lymphoid and myeloid cells. J Leukoc Biol 66:375–381

    PubMed  CAS  Google Scholar 

  • Cosman D, Fanger N, Borges L, Kubin M, Chin W, Peterson L, Hsu ML (1997) A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules. Immunity 7:273–282

    Article  PubMed  CAS  Google Scholar 

  • Cosman D, Fanger N, Borges L (1999) Human cytomegalovirus, MHC class I and inhibitory signaling receptors: more questions than answers. Immunol Rev 168:177–185

    Article  PubMed  CAS  Google Scholar 

  • Feldweg AM, Friend DS, Zhou JS, Kanaoka Y, Daheshia M, Li L, Austen F, Katz HR (2003) gp49B1 suppresses stem cell factor-induced mast cell activation-secretion and attendant inflammation in vivo. Eur J Immunol 33:2262–2268

    Article  PubMed  CAS  Google Scholar 

  • Hayami K, Fukuta D, Nishikawa Y, Yamashita Y, Inui M, Ohyama Y, Hikida M, Ohmori H, Takai T (1997) Molecular cloning of a novel murine cell-surface glycoprotein homologous to killer cell inhibitory receptors. J Biol Chem 272:7320–7327

    Article  PubMed  CAS  Google Scholar 

  • Ho LH, Uehara T, Chen CC, Kubagawa H, Cooper MD (1999) Constitutive tyrosine phosphorylation of the inhibitory paired immunoglobulin-like receptor PIR-B. Proc Natl Acad Sci USA. 96:15086–15090

    Article  PubMed  CAS  Google Scholar 

  • Katsura Y (2002) Redefinition of lymphoid progenitors. Nat Rev Immunol 12:127–132

    Article  Google Scholar 

  • Katsuta H, Tsuji S, Niho Y, Kurosaki T, Kitamura D (1998) Lyn-mediated down-regulation of B-cell antigen receptor signaling: inhibition of protein kinase C activation by Lyn in a kinase-independent fashion. J Immunol 160:1547–1551

    PubMed  CAS  Google Scholar 

  • Kawamoto H, Ohmura K, Katsura Y (1997) Direct evidence for the commitment of hematopoietic stem cells to T, B, and myeloid lineages in murine fetal liver. Int Immunol 9:1011–1019

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto H, Ikawa T, Ohmura K, Fujimoto S, Katsura Y (2000) T-cell progenitors emerge earlier than B-cell progenitor in the murine fetal liver. Immunity 12:441–450

    Article  PubMed  CAS  Google Scholar 

  • Kollnberger S, Bird LA, Roddis M, Hacquard-Bouder C, Kubagawa H, Bodmer HC, Breban M, McMichael AJ, Bowness P (2004) HLA-B27 heavy chain homodimers are expressed in HLAB27 transgenic rodent models of spondyloarthritis and are ligands for paired Ig-like receptors. J Immunol 173:1699–1710

    PubMed  CAS  Google Scholar 

  • Kubagawa H, Burrows PD, Cooper MD (1997) A novel pair of immunoglobulin-like receptors expressed by B cells and myeloid cells. Proc Natl Acad Sci USA 94:5261–5266

    Article  PubMed  CAS  Google Scholar 

  • Kubagawa H, Chen CC, Ho LH, Shimada T, Gartland L, Mashburn C, Uehara T, Ravetch JV, Cooper MD (1999a) Biochemical nature and cellular distribution of the paired immunoglobulin-like receptors, PIR-A and PIR-B. J Exp Med 189:309–317

    Article  PubMed  CAS  Google Scholar 

  • Kubagawa H, Cooper MD, Chen CC, Ho LH, Alley TL, Hurez V, Tun T, Uehara T, Shimada T, Burrows PD (1999b) Paired immunoglobulin-like receptors of activating and inhibitory types. Curr Top Microbiol Immunol 244:137–149

    PubMed  CAS  Google Scholar 

  • Lanier LL (2001) Face off—the interplay between activating and inhibitory immune receptors. Curr Opin Immunol 13:326–331

    Article  PubMed  CAS  Google Scholar 

  • Liang S, Baibakov B, Horuzsko A (2002) HLA-G inhibits the function of murine dendritic cells via the PIR-B immune inhibitory receptor. Eur J Immunol 32:2418–2426

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Liu Z, Witkowski P, Vlad G, Manavalan JS, Scotto L, Kim-Schulze S, Cortesini S, Hardy MA, Suciu-Foca N (2004) Rat CD8+ FOXP3+ T suppressor cells mediate tolerance to allogeneic heart transplants, including PIR-B in APC and rendering the graft invulnerable to rejection. Transplant Immunol 13:239–247

    Article  CAS  Google Scholar 

  • Long EO (1999) Regulation of immune responses through inhibitory receptors. Annu Rev Immunol 17:875–904

    Article  PubMed  CAS  Google Scholar 

  • Maeda A, Kurosaki M, Ono M, Takai T, Kurosaki T (1998a) Requirement of SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 for paired immunogloblin-like receptor B (PIR-B)-mediated inhibitory signal. J Exp Med 187:1355–1360

    Article  PubMed  CAS  Google Scholar 

  • Maeda A, Kurosaki M, Kurosaki T (1998b) Paired immunoglobulin-like receptor (PIR)-A is involved in activating mast cells through its association with Fc receptor γ chain. J Exp Med 188:991–995

    Article  PubMed  CAS  Google Scholar 

  • Malbec O, Fridman WH, Daëron M (1999) Negative regulation of c-kit-mediated cell proliferation by FcγRIIB. J Immunol 162:4424–4429

    PubMed  CAS  Google Scholar 

  • Martin AM, Kulski JK, Witt C, Pontarotti P, Christiansen FT (2002) Leukocyte Ig-like receptor complex (LRC) in mice and men. Trends Immunol 23:81–88

    Article  PubMed  CAS  Google Scholar 

  • Masuda K, Kubagawa H, Ikawa T, Chen CC, Kakugawa K, Hattori M, Kageyama R, Cooper MD, Minato N, Katsura Y, Kawamoto H (2005) Prethymic T-cell development defined by the expression of paired immunoglobulin-like receptors. EMBO J 24:4052–4060

    Article  PubMed  CAS  Google Scholar 

  • Nakamura A, Kobayashi E, Takai T (2004) Exacerbated graft-versus-host disease in Pirb-/- mice. Nat Immunol 5:623–629

    Article  PubMed  CAS  Google Scholar 

  • Ono M, Yuasa T, Ra C, Takai T (1999) Stimulatory function of paired immunoglobulin-like receptor-A in mast cell line by associating with subunits common to Fc receptors. J Biol Chem 274:30288–30296

    Article  PubMed  CAS  Google Scholar 

  • Pereira S, Lowell C (2003) The Lyn tyrosine kinase negatively regulates neutrophil integrin signaling. J Immunol 171:1319–1327

    PubMed  CAS  Google Scholar 

  • Pereira S, Zhang H, Takai T, Lowell CA (2004) The inhibitory receptor PIR-B negative regulates neutrophil and macrophage integrin signaling. J Immunol 173:5757–5765

    PubMed  CAS  Google Scholar 

  • Ravetch JV, Lanier LL (2000) Immune inhibitory receptors. Science 290:84–89

    Article  PubMed  CAS  Google Scholar 

  • Rudge EU, Cutler AJ, Pritchard NR, Smith KGC (2001) Interleukin 4 reduces expression of inhibitory receptors on B cells and abolishes CD22 and FcγRII-mediated B-cell suppression. J Exp Med 195:1079–1085

    Article  Google Scholar 

  • Shiroishi M, Tsumoto K, Amano K, Shirakihara Y, Colonna M, Braud VM, Allan DSJ, Makadzange A, Rowland-Jones S, Willcox B, Jones EY, van der Merwe PA, Kumagai I, Maenaka K (2003) Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc Natl Acad Sci USA 100:8856–8861

    Article  PubMed  CAS  Google Scholar 

  • Sidorenko SP, Clark EA (2003) The dual-function CD150 receptor subfamily: the viral attraction. Nat Immunol 4:19–24

    Article  PubMed  CAS  Google Scholar 

  • Takai T, Ono M (2001) Activating and inhibitory nature of the murine paired immunoglobulin-like receptor family. Immunol Rev 181:215–222

    Article  PubMed  CAS  Google Scholar 

  • Takai T (2005a) Paired immunoglobulin-like receptors and their MHC class I recognition. Immunology 115:433–440

    Article  PubMed  CAS  Google Scholar 

  • Takai T (2005b) A novel recognition system for MHC class I molecules contributed by PIR. Adv Immunol 88:161–192

    Article  PubMed  CAS  Google Scholar 

  • Taylor LS, McVicar DW (1999) Functional association of FcɛRIγ with arginine632 of paired immunoglobulin-like receptor (PIR)-A3 in murine macrophages. Blood 94:1790–1796

    PubMed  CAS  Google Scholar 

  • Tun T, Kubagawa Y, Dennis G, Burrows PD, Cooper MD, Kubagawa H (2003) Genomic structure of mouse PIR-A6, an activating member of the paired immunoglobulin-like receptor gene family. Tissue Antigen 61:220–230

    Article  CAS  Google Scholar 

  • Uehara T, Bléry M, Kang DW, Chen CC, Ho LH, Gartland GL, Liu FT, Vivier E, Cooper MD, Kubagawa H (2001) Inhibition of IgE-mediated mast cell activation by the paired Ig-like receptor PIR-B. J Clin Invest 108:1041–1050

    PubMed  CAS  Google Scholar 

  • Ujike A, Takeda K, Nakamura A, Ebihara S, Akiyama K, Takai T (2002) Impaired dendritic cell maturation and increased TH2 responses in PIR-B-/- mice. Nat Immunol 3:542–548

    Article  PubMed  CAS  Google Scholar 

  • Wagtmann N, Rojo S, Eichler E, Mohrenweiser H, Long EO (1997) A new human gene complex encoding the killer cell inhibitory receptors and related monocyte/macrophage receptors. Curr Biol 7:615–618

    Article  PubMed  CAS  Google Scholar 

  • Yamashita Y, Fukuta D, Tsuji A, Nagabukuro A, Matsuda Y, Nishikawa Y, Ohyama Y, Ohmori H, Ono M, Takai T (1998a) Genomic structure and chromosomal location of p91, a novel murine regulatory receptor family. J Biochem (Tokyo) 123:358–368

    PubMed  CAS  Google Scholar 

  • Yamashita Y, Ono M, Takai T (1998b) Inhibitory and stimulatory function of paired Ig-like receptor (PIR) family in RBL-2H3 cells. J Immunol 161:4042–4047

    PubMed  CAS  Google Scholar 

  • Wang J, Koizumi T, Watanabe T (1996) Altered antigen receptor signaling and impaired Fasmediated apoptosis of B cells in Lyn-deficient mice. J Exp Med 184:831–838

    Article  PubMed  CAS  Google Scholar 

  • Wheadon H, Paling NRD, Welham MJ (2002) Molecular interactions of SHP1 and SHP2 in IL-3-signaling. Cell Signal 14:219–229

    Article  PubMed  CAS  Google Scholar 

  • Willcox BE, Thomas LM, Bjorkman PJ (2003) Crystal structure of HLA-A2 bound to LIR-1, a host and viral major histocompatibility complex receptor. Nat Immunol 4:913–919

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Meng F, Chu CC, Takai T, Lowell CA (2005) The Src family kinases Hck and Fgr negatively regulate neutrophil and dendritic cell chemokine signaling via PIR-B. Immunity 22:235–246

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Kubagawa, H. et al. (2008). Recent Progress on Paired Immunoglobulin-Like Receptors. In: Kitamura, D. (eds) How the Immune System Recognizes Self and Nonself. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73884-8_3

Download citation

Publish with us

Policies and ethics