Skip to main content

Tail Region of the Primary Somatosensory Cortex and Its Relation to Pain Function

  • Chapter
  • 1310 Accesses

Abstract

In the present study, electrophysiological mapping methods were used to estimate the size of the tail representation area of the primary somatosensory cortex (SI) of the rat. Using a half-maximal evoked potential method and multiunit recording method, we estimated that the SI tail area was 0.51 and 0.78 mm2, respectively. A dissector method was used to estimate the neuronal densities. There was, on average, 84 829 neurons/mm3 and 117 750 neurons under 1 mm2 of cortical area in the tail area of the SI. Therefore, there are about 94 000 neurons in the estimated 0.8 mm2 of the SI that are involved in processing sensory signals from the tail. Anteroposteriorly oriented, evenly spaced 16-channel microwires were chronically implanted in the frontoparietooccipital cortex that was centered on the SI. Thereafter, evoked field potentials were used to estimate the change in the size of the tail area with two modalities—pain and touch—under two states: anesthetized and conscious. No significant difference was found between the size of the tail area when tactile and noxious stimulations were used. However, the number of tail responsive channels showed a significant increase when the rat was awake and behaving.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D’Amour FE, Smith DL (1941) A method for determining loss of pain sensation. J Pharmacol Exp Ther 72:74–79.

    Google Scholar 

  2. Hebel R, Stromberg MW (1986) Anatomy and embryology of the laboratory rat. In: Nervous system. Biomed Verlag, Worthsee, Germany, p 125.

    Google Scholar 

  3. Jaw FS, Yen CT, Tsao HW, et al (1991) A modified “triangular pulse” stimulator for C fiber stimulation. J Neurosci Methods 37:169–172

    Article  PubMed  CAS  Google Scholar 

  4. Chapin JK, Lin CS (1984) Mapping the body representation with SI cortex of anesthetized and awake rats. J Comp Neurol 229:199–213.

    Article  PubMed  CAS  Google Scholar 

  5. Mitchell D, Hellon RF (1977) Neuronal and behavioral responses in rats during noxious stimulation of the tail. Proc R Soc Lond B 197:169–194.

    Article  PubMed  CAS  Google Scholar 

  6. Welker C (1971) Microelectrode delineation of fine grain somatotopic organization of SmI cerebral neocortex in albino rat. Brain Res 26:259–275.

    PubMed  CAS  Google Scholar 

  7. Woolsey CN (1958) Organization of somatic sensory and motor areas of the cerebral cortex. In: Harlow HF, Woolsey CN (eds) Biological and biochemical bases of behavior. University of Wisconsin Press, Madison, WI, pp 63–82.

    Google Scholar 

  8. Coggeshall RE (1992) A consideration of neural counting methods. Trends Neurosci 15: 9–13.

    Article  PubMed  CAS  Google Scholar 

  9. Swanson LW (1992) Brain maps: structure of the rat brain. Elsevier, Amsterdam.

    Google Scholar 

  10. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates (6th ed). Academic, London.

    Google Scholar 

  11. Harding AJ, Halliday GM, Cullen K (1994) Practical considerations for the use of the optical dissector in estimating neuronal. J Neurosci Methods 51:83–89.

    Article  PubMed  CAS  Google Scholar 

  12. Pakkenberg B, Gundersen HJG (1989) New stereological method for obtaining unbiased efficient estimates of total nerve cell number in human brain areas. APMIS 97:677–681.

    PubMed  CAS  Google Scholar 

  13. Tsai ML, Yen CT (2003) A simple method for fabricating horizontal and vertical microwire arrays. J Neurosci Methods 131:107–110.

    Article  PubMed  Google Scholar 

  14. Yen CT, Huang CH, Fu SE (1994) Surface temperature change, cortical evoked potential and pain behavior elicited by CO2 lasers. Chin J Physiol 37:193–199.

    PubMed  CAS  Google Scholar 

  15. Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138.

    Article  PubMed  CAS  Google Scholar 

  16. Kaas JH (1997) Topographic maps are fundamental to sensory processing. Brain Res Bull 44:107–112.

    Article  PubMed  CAS  Google Scholar 

  17. Willshaw DJ, von der Malsburg C (1976) How patterned neural connections can be set up by self-organization. Proc R Soc Lond B 194:431–445.

    PubMed  CAS  Google Scholar 

  18. Van Essen DC (2002) Surface-based atlases of cerebellar cortex in the human, macaque, and mouse. Ann N Y Acad Sci 978:468–479.

    Article  PubMed  Google Scholar 

  19. Oakley B, Schafer R (1978) Experimental neurobiology, a laboratory manual. University of Michigan Press, Ann Arbor, p 121.

    Google Scholar 

  20. Beaulieu C, Colonnier M (1983) The number of neurons in the different laminae of the binocular and monocular regions of area 17 in the cat. J Comp Neurol 217:337–344.

    Article  PubMed  CAS  Google Scholar 

  21. Beaulieu C, Colonnier M (1989) Number of neurons in individual laminae of areas 3B, 4γ, and 6aα of the cat cerebral cortex: a comparison with major visual areas. J Comp Neurol 279:228–234

    Article  PubMed  CAS  Google Scholar 

  22. Beaulieu C (1993) Numerical date on neocortical neurons in adult rat, with special reference to the GABA population. Brain Res 609:284–292.

    Article  PubMed  CAS  Google Scholar 

  23. Ren JQ, Alika Y, Heizmann CW, et al (1992) Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons. Exp Brain Res 92:1–14.

    Article  PubMed  CAS  Google Scholar 

  24. Schuz A, Palm G (1989) Density of neurons and synapses in the cerebral cortex of the mouse. J Comp Neurol 286:442–455.

    Article  PubMed  CAS  Google Scholar 

  25. Shouenborg J, Kalliomake J, Gustavsson P, et al (1986) Field potentials evoked in the rat somatosensory cortex by impulses in cutaneous Aβ-and C-fibers. Brain Res 397:86–92.

    Article  Google Scholar 

  26. Shaw FZ, Chen RF, Tsao HW, et al (1999) Comparison of touch-and laser heat-evoked cortical field potentials in conscious rats. Brain Res 824:183–196.

    Article  PubMed  CAS  Google Scholar 

  27. Sun JJ, Yang JW, Shyu BC (2006) Current source density analysis of laser heat-evoked intra-cortical field potentials in the primary somatosensory cortex of rats. Neuroscience 140:1321–1136.

    Article  PubMed  CAS  Google Scholar 

  28. Merzenich MM, Nelson RJ, Stryker MP, et al (1984) Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 224:591–605.

    Article  PubMed  CAS  Google Scholar 

  29. Faggin BM, Nguyen KT, Nicolelis MAL (1997) Immediate and simultaneous sensory reorganization at cortical and subcortical levels of the somatosensory system. Proc Natl Acad Sci U S A 94:9428–9433.

    Article  PubMed  CAS  Google Scholar 

  30. Shaw FZ, Chen RF, Yen CT (2001) Dynamic changes of touch-and laser heat-evoked field potentials of primary somatosensory cortex in awake and pentobarbital-anesthetized rats. Brain Res 911:105–115.

    Article  PubMed  CAS  Google Scholar 

  31. Tsai ML, Kuo CC, Sun WZ, et al (2004) Differential morphine effects on short-and longlatency laser-evoked cortical responses in the rat. Pain 110:665–674.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Yen, CT., Chen, RS. (2008). Tail Region of the Primary Somatosensory Cortex and Its Relation to Pain Function. In: Onozuka, M., Yen, CT. (eds) Novel Trends in Brain Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-73242-6_14

Download citation

Publish with us

Policies and ethics