Skip to main content

Molecular Genetics of Acute Promyelocytic Leukemia: A Rationale for “Transcription Therapy” for Cancer

  • Conference paper
Book cover Cell Therapy

Part of the book series: Keio University Symposia for Life Science and Medicine ((KEIO,volume 5))

  • 81 Accesses

Summary

The last few years have been crucial for the elucidation of the molecular mechanisms underlying the pathogenesis of human leukemia [1]. In particular, more than 80% of myeloid leukemias have been attributed to, or associated with, one or more specific molecular lesions. In the vast majority of cases these molecular events are chromosomal translocations that rearrange the regulatory and coding regions of a variety of genes which encode transcription factors. These proteins can interfere with the normal transduction, at the transcription level, of pivotal cellular processes such as growth, differentiation, and survival. The identification of these lesions renders it possible to reclassify myeloid leukemias according to new “molecular” criteria, and to develop new diagnostic and prognostic tools. Furthermore, the understanding of the aberrant transcriptional mechanisms underlying leukemia pathogenesis allows the development of new therapeutic approaches. In particular, the recent elucidation of the molecular mechanisms underlying the pathogenesis of acute promyelocytic leukemia has allowed us to propose and exploit what we regard as a new concept for the treatment of cancer, which we refer to as “transcription therapy.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Look AT (1997) Oncogenic transcription factors in the human acute leukemias. Science 278: 1059–1064

    Article  PubMed  CAS  Google Scholar 

  2. Grignani F, Fagioli M, Alcalay M, Longo L, Pandolfi PP, Donti E, Biondi, A, Lo Coco F, Pelicci PG (1994) Acute promyelocytic leukemia: from genetics to treatment. Blood 83: 10–25

    PubMed  CAS  Google Scholar 

  3. Warrell RP Jr, de The H, Wang ZY, Degos L (1993) Acute promyelocytic leukemia. New Engl J Med 329: 177–189

    Article  PubMed  CAS  Google Scholar 

  4. Kalantry S, Delva L, Gab oli M, Gandini D, Giorgio M, Hawe N, He L-Z, Peruzzi D, Rivi R, Tribioli C, Wang Z-G, Zhang H, Pandolfi PP (1997) Gene rearrangements in the molecular pathogenesis of acute promyelocytic leukemia. J Cell Physiol 173: 288–296

    Article  PubMed  CAS  Google Scholar 

  5. Pandolfi PP (1996) PML, PLZF and NPM in the pathogenesis of acute promyelocytic leukemia. Haematologica 81: 472–482

    PubMed  CAS  Google Scholar 

  6. Reddy BA, Etkin LD, Freemont PS (1992) A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends Biochem Sci 17: 344–345

    Article  PubMed  CAS  Google Scholar 

  7. Wang ZG, Delva L, Gaboli M, Rivi R, Giorgio M, Cordon-Cardo C, Grosveld F, Pandolfi PP (1998) Role of PML in cell growth and the retinoic acid pathway. Science 279: 1547–1551

    Article  PubMed  CAS  Google Scholar 

  8. Chen Z, Brand NJ, Chen A, Chen SJ, Tong JH, Wang ZY, Waxman S, Zelent A (1993) Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic luekaemia. EMBO J 12: 1161–1167

    PubMed  CAS  Google Scholar 

  9. Li JY, English MA, Ball HJ, Yeyati PL, Waxman S, Licht JD (1997) Sequence-specific DNA binding and transcriptional regulation by the promyelocytic leukemia zinc finger protein. J Biol Chem 272: 22447–22455

    Article  PubMed  CAS  Google Scholar 

  10. Koken MHM, Reid A, Quignon F, Chelbi-Alix MK, Davies JM, Kabarowski JHS, Zhu J, Dong S, Chen S, Chen Z, Tan CC, Licht J, Waxman S, de The H, Zelent A (1997) Leukemia-associated retinoic acid receptor alpha fusion partners, PML and PLZF, heterodimerize and colocalize to nuclear bodies. Proc Natl Acad Sci USA 94: 10255–10260

    Article  PubMed  CAS  Google Scholar 

  11. Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10: 940–954

    PubMed  CAS  Google Scholar 

  12. Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature (Lond) 389: 349–352

    Article  CAS  Google Scholar 

  13. Gudas L, Sporn M, Roberts A (1994) The retinoids: Cellular biology and biochemistry of the retinoids. Raven Press, New York, pp 443–520

    Google Scholar 

  14. Licht JD, Chomienne C, Goy A, Chen A, Scott A, Head DR, Michaux JL, Wu Y, DeBlasio A, Miller WH Jr, Zelenetz AD, Willman CL, Chen Z, Chen S-J, Zelent A, Macintyre E, Veil A, Cortes J, Kantarjian H, Waxman S (1995) Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11;17). Blood 85: 1083–1094

    PubMed  CAS  Google Scholar 

  15. Perez A, Kastner P, Sethi S, Lutz Y, Reibel C, Chambon P (1993) PML/RAR homodimers: distinct DNA. Binding properties and heteromeric interactions with RXR. EMBO J 12: 3171–3182

    CAS  Google Scholar 

  16. Dong S, Zhu J, Reid A, Strutt P, Guidez F, Zhong H-J, Wang Z-Y, Licht J, Waxman S, Chomienne C, Chen Z, Zelent A, Chen S-J (1996) Amino-terminal protein-protein interaction motif ( POZ-domain) is responsible for activities of the promyelocytic leukemia zinc finger-retinoic acid receptor-a fusion protein. Proc Natl Acad Sci USA 93: 3624–3629

    Article  PubMed  CAS  Google Scholar 

  17. de The H, Lavau C, Marehio A, Chomienne C, Degos L, Dejean A (1991) The PML/RARa fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukaemia encodes a functionally altered RAR. Cell 66: 675–684

    Google Scholar 

  18. Pandolfi PP, Grignani F, Alcalay M, Mencarelli A, Biondi A, Lo Coco F, Pelicci PG (1991) Structure and origin of the acute promyelocytic leukemia myl/RARa cDNA and characterization of its retinoid-binding and transactivation properties. Oncogene 6: 1285–1292

    PubMed  CAS  Google Scholar 

  19. Kastner P, Perez A, Lutz Y, Rochette-Egly C, Gaub M-P, Durand B, Lanotte M, Berger R, Chambon P (1992) Structure, localization and transcriptional properties of two classes of retinoic acid receptor alpha fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EMBO J 11: 629–642

    PubMed  CAS  Google Scholar 

  20. Kakizuka A, Miller WH Jr, Umesono K, Warrell RP Jr, Frankel SR, Murty VVVS, Dmitrovsky E, Evans RM (1991) Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARa with a novel putative transcription factor, PML. Cell 66: 663–674

    Article  PubMed  CAS  Google Scholar 

  21. Chen Z, Guidez F, Rousselot P, Agadir A, Chen SJ, Wang ZY, Degos L, Zelent A, Waxman S, Chomienne C (1994) PLZF-RAR alpha fusion proteins generated from the variant t(11;17)(g23;g21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors. Proc Natl Acad Sci USA 91: 1178–1182

    Article  PubMed  CAS  Google Scholar 

  22. Licht JD, Shaknovich R, English MA, Melnick A, Li J-Y, Reddy JC, Dong S, Chen S-J, Zelent A, Waxman S (1996) Reduced and altered DNA-binding and transcriptional properties of the PLZF-retinoic acid receptor-a chimera generated in t(11;17)-associated acute promyelocytic leukemia. Oncogene 12: 323–336

    PubMed  CAS  Google Scholar 

  23. Koken MHM, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N, de Jong L, Szostecki C, Calvo F, Chomienne C, Degos L, Puvion E, de The H (1994) The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 13: 1073–1083

    PubMed  CAS  Google Scholar 

  24. Dyck J, Maul GG, Miller WH Jr, Chen JD, Kakizuka A, Evans RM (1994) A novel macro-molecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell 76: 333–343

    Article  PubMed  CAS  Google Scholar 

  25. Weis K, Rambaud S, Lavau C, Jansen J, Carvalho T, Carmo-Fonseca M, Lamond A, Dejean A (1994) Retinoic acid regulates aberrant nuclear localization of PML-RARa in acute promyelocytic luekemic cells. Cell 76: 345–356

    Article  PubMed  CAS  Google Scholar 

  26. Nervi C, Poindexter EC, Grignani F, Pandolfi PP, Lo Coco F, Avvisati G, Pelicci PG, Jetten AM (1992) Characterization of the PML/RARa chimeric product of the acute promyelocytic leukemia specific t(15;17) translocation. Cancer Res 52: 3687–3692

    PubMed  CAS  Google Scholar 

  27. Ruthardt M, Testa U, Nervi C, Ferrucci PF, Grignani F, Puccetti E, Grignani F, Peschle C, Pelicci PG (1997) Opposite effects of the acute promyelocytic leukemia PML-retinoic acid receptor alpha ( RAR alpha) and PLZF-RAR alpha fusion proteins on retinoic acid signalling. Mol Cell Biol 17: 4859–4869

    PubMed  CAS  Google Scholar 

  28. He LZ, Guidez F, Tribioli C, Peruzzi D, Ruthardt M, Zelent A, Pandolfi PP (1998) Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nat Genet 18: 126–135

    Article  PubMed  CAS  Google Scholar 

  29. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M, Fanelli M, Ruthardt M, Ferrara FF, Zamir I, Seiser C, Grignani F, Lazar MA, Minucci S, Pelicci PG (1998) Nature 391: 815–818

    Article  PubMed  CAS  Google Scholar 

  30. Lin RJ, Nagy L, Inoue S, Shao W, Miller WHJ, Evans RM (1998) Nature (Lond) 391: 811–814

    Article  CAS  Google Scholar 

  31. Yoshida M, Horinouchi S, Beppu T (1995) Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays 17: 423–430

    Article  PubMed  CAS  Google Scholar 

  32. Lea MA, Tulsyan N (1995) Discordant effects of butyrate analogues on erythroleukemia cell proliferation, differentiation and histone deacetylase. Anticancer Res 15: 879–883

    PubMed  CAS  Google Scholar 

  33. Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, Marks PA (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 95: 3003–3007

    Article  PubMed  CAS  Google Scholar 

  34. Collins AF, Pearson HA, Giardina P, McDonagh KT, Brusilow SW, Dover GJ (1995) Oral sodium phenylbutyrate therapy in homozygous beta thalassemia: a clinical trial. Blood 85: 43–49

    PubMed  CAS  Google Scholar 

  35. Darkin-Rattray SJ, Gurnett AM, Myers RW, Dulski PM, Crumley TM, Allocco JJ, Cannova C, Meinke PT, Colletti SL, Bednarek MA, Singh SB, Goetz MA, Dombrowski AW, Polishook JD, Schmatz DM (1996) Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci USA 93: 13143–13147

    Article  PubMed  CAS  Google Scholar 

  36. Warrell RP Jr, He L-Z, Richon V, Calleja E, Pandolfi PP (1998) Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst 90: 1621–1625

    Article  PubMed  CAS  Google Scholar 

  37. Lo Coco F, Ye BH, Lista F, Corradini P, Offit K, Knowles DM, Chaganti RSK, Dalla-Favera R (1994) Rearrangements of the BCL-6 gene in diffuse large-cell non-Hodgkins lymphoma. Blood 83: 1757–1759

    PubMed  Google Scholar 

  38. Magrath I (1990) Lymphocyte ontogeny: a conceptual basis for understanding neoplasia of the immune system. In: Magrath I (ed) The non-Hodgkin’s Lymphoma. Williams and Wilkins, Baltimore, pp 29–48

    Google Scholar 

  39. Dhordain P, Albagli O, Lin RJ, Ansieau S, Quief S, Leutz A, Kerckaert JP, Evans RM, Leprince D (1997) Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proc Natl Acad Sci USA 94: 10762–10767

    Article  PubMed  CAS  Google Scholar 

  40. Ye BH, Chaganti S, Chang C-C, Niu H, Corradini P, Chaganti RSK, Dalla Favera R (1995) Chromosomal translocations cause deregulated BCL-6 expression by promoter substitution in B-cell lymphoma. EMBO J 14: 6209–6217

    PubMed  CAS  Google Scholar 

  41. Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM (1998) ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA 95: 10860–10865

    Article  PubMed  CAS  Google Scholar 

  42. Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA (1998) Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 18: 7185–7191

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Tokyo

About this paper

Cite this paper

Pandolfi, P.P. (2000). Molecular Genetics of Acute Promyelocytic Leukemia: A Rationale for “Transcription Therapy” for Cancer. In: Ikeda, Y., Hata, Ji., Koyasu, S., Kawakami, Y., Hattori, Y. (eds) Cell Therapy. Keio University Symposia for Life Science and Medicine, vol 5. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68506-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68506-7_11

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68508-1

  • Online ISBN: 978-4-431-68506-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics