Skip to main content

Notch in Hematopoiesis: Cell Fate Decisions and Self-Renewal of Progenitors

  • Conference paper
Cell Therapy

Part of the book series: Keio University Symposia for Life Science and Medicine ((KEIO,volume 5))

  • 81 Accesses

Summary

The Notch family comprises a group of highly conserved cell-surface receptors that mediate cell fate decisions in many developmental processes, from worms and flies to mammalian systems. Cell-cell signaling through Notch permits multipotent progenitors in the same environmental context to respond differently to developmental signals, facilitating the establishment of distinct cell types. Over the past several years major advances have been made in defining the molecular mechanisms involved in Notch signaling, understanding the complex interactions of Notch with other signaling pathways, and establishing the central role of Notch in mammalian development. Here we present evidence supporting a conserved role for Notch in hematopoietic regulation. Notch1 and Notch2 are both expressed by hematopoietic progenitors and the Notch ligand, Jagged1,is expressed by a subset of bone marrow stromal cells. Using 32D myeloid progenitors, we show that activation of Notch1 by Jagged1 inhibits G-CSF-induced granulocytic differentiation and permits the maintenance of undifferentiated cells. We also demonstrate that Notch1 and Notch2 have distinct intracellular activities that permit modulation of myeloid differentiation specifically in response to G-CSF or GM-CSF. We speculate that Notch plays a central role in the regulation of cell fate determination and self-renewal of progenitors during hematopoietis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ogawa M (1993) Differentiation and proliferation of hematopoietic stem cells. Blood 81: 2844–2853

    PubMed  CAS  Google Scholar 

  2. Orkin SH (1995) Hematopoiesis: how does it happen? Curr Biol 7:870–877

    CAS  Google Scholar 

  3. Shivdasani RA, Orkin SH (1996) The transcriptional control of hematopoiesis. Blood 87:4025–4039

    PubMed  CAS  Google Scholar 

  4. Morrison SJ, Uchida N, Weissman IL (1995) The biology of hematopoietic stem cells. Annu Rev Cell Dev Biol 11:35–71

    Article  PubMed  CAS  Google Scholar 

  5. Morrison SJ, Shah NM, Anderson DJ (1997) Regulatory mechanisms in stem cell biology. Cell 88:287–298

    Article  PubMed  CAS  Google Scholar 

  6. Cross MA, Enver T (1997) The lineage commitment of haemopoietic progenitor cells. Curr Opin Genet Dev 7:609–613

    Article  PubMed  CAS  Google Scholar 

  7. Metcalf D, Enver T, Heyworth CM, Dexter TM (1998) Controversies in hematology: growth factors and hematopoietic cell fate. Blood 92:345–352

    PubMed  CAS  Google Scholar 

  8. Simpson P (1997) Notch signalling in development: on equivalence groups and asymmetric developmental potential. Curr Opin Genet Dev 7:537–542

    Article  PubMed  CAS  Google Scholar 

  9. Kimble J, Simpson P (1997) The Lin-12/Notch signaling pathway and its regulation. Annu Rev Cell Dev Biol 13:333–361

    Article  PubMed  CAS  Google Scholar 

  10. Fleming RJ, Purcell K, Artavanis-Tsakonas S (1997) The NOTCH receptor and its ligands. Trends Cell Biol 7:437–441

    CAS  Google Scholar 

  11. Greenwald I (1998) LIN-12/Notch signaling: lessons from worms and flies. Genes Dev 12:1751–1762

    Article  PubMed  CAS  Google Scholar 

  12. Egan SE, St. Pierre B, Leow CC (1998) Notch receptors, partners and regulators: from conserved domains to powerful functions. Curr Top Microbiol Immunol 228:273–324

    Google Scholar 

  13. Weinmaster G (1998) Notch signaling: direct or what? Curr Opin Genet Dev 8:436–442

    Article  PubMed  CAS  Google Scholar 

  14. Artavanis-Tsakonas S, Matsuno K, Fortini ME (1995) Notch signaling. Science 268:225–232

    CAS  Google Scholar 

  15. Kopan R, Turner DL (1996) The Notch pathway: democracy and aristocracy in the selection of cell fate. Curr Opin Neurobiol 6:594–601

    Article  PubMed  CAS  Google Scholar 

  16. Honjo T (1996) The shortest path from the surface to the nucleus: RBP-Jx/Su(H) transcription factor. Genes Cells 1:1–9

    Article  PubMed  CAS  Google Scholar 

  17. Lewis J (1998) A short cut to the nucleus. Nature (Lond) 393:304–305

    Article  CAS  Google Scholar 

  18. Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T, Honjo T (1995) Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-Jx/Su(H). Curr Biol 5:1416–1423

    Article  PubMed  CAS  Google Scholar 

  19. Roehl H, Bosenberg M, Blelloch R, Kimble J (1996) Roles of the RAM and ANK domains in signaling by the C. elegans GLP-1 receptor. EMBO J 15:7002–7012

    PubMed  CAS  Google Scholar 

  20. Hsieh JJ, Henkel T, Salmon P, Robey E, Peterson MG, Hayward SD (1996) Truncated mammalian Notchl activates CBF1/RBPJx-repressed genes by a mechanism resembling that of epstein-barr virus EBNA2. Mol Cell Biol 16:952–959

    PubMed  CAS  Google Scholar 

  21. Kato H, Taniguchi Y, Kurooka H, Minoguchi S, Sakai T, Nomura-Okazaki S, Tamura K, Honjo T (1997) Involvement of RBP-J in biological functions of mouse Notchl and its derivatives. Development (Camb) 124:4133–4141

    CAS  Google Scholar 

  22. Bigas A, Martin DIK, Milner LA (1998) Notchl and Notchl inhibit myeloid differentiation in response to different cytokines. Mol Cell Biol 18:2324–2333

    PubMed  CAS  Google Scholar 

  23. Muskavitch MAT (1994) Delta-notch signaling and Drosophila cell fate choice. Dev Biol 166:415–430

    Article  PubMed  CAS  Google Scholar 

  24. Fitzgerald K, Greenwald I (1995) Interchangeability of Caenorhabditis elegans DSL proteins and intrinsic signalling activity of their extracellular domains in vivo. Development (Camb) 121:4275–4282

    CAS  Google Scholar 

  25. Blaumueller CM, Qi H, Zagouras P, Artavanis-Tsakonas S (1997) Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90:281–291

    Article  PubMed  CAS  Google Scholar 

  26. Kopan R, Schroeter EH, Weintraub H, Nye J (1996) Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc Natl Acad Sci USA 93:1683–1688

    Article  PubMed  CAS  Google Scholar 

  27. Schroeter EH, Kisslinger JA, Kopan R (1998) Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature (Lond) 393:382–386

    Article  CAS  Google Scholar 

  28. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J (1991) TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66:649–661

    Article  PubMed  CAS  Google Scholar 

  29. Milner LA, Kopan R, Martin DIK, Bernstein ID (1994) A human homologue of the Drosophila developmental gene, Notch, is expressed in CD34+ hematopoietic precursors. Blood 83:2057–2062

    PubMed  CAS  Google Scholar 

  30. Milner LA, Bigas A (1999) Notch as a mediator of cell fate determination in hematopoiesis: evidence and speculation. Blood 93:2431–2448

    PubMed  CAS  Google Scholar 

  31. Hasserjian RP, Aster JC, Davi F, Weinberg DS, Sklar J (1996) Modulated expression of Notchl during thymocyte development. Blood 88:970–976

    PubMed  CAS  Google Scholar 

  32. Robey E, Chang D, Itano A, Cado D, Alexander H, Lans D, Weinmaster G, Salmon P (1996) An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87:483–492

    Article  PubMed  CAS  Google Scholar 

  33. Li L, Milner LA, Deng Y, Iwata M, Banta A, Graf L, Marcovina S, Friedman C, Trask B, Hood L, Torok-Storb B (1998) The human homolog of rat Jagged, hJaggedl, is expressed by marrow stroma and inhibits differentiation of 32D cells through interaction with Notchl. Immunity 8:43–55.

    Article  PubMed  CAS  Google Scholar 

  34. Varnum-Finney B, Purton LE, Yu M, Brashem-Stein C, Flowers D, Staats S, Moore KA, Le Roux I, Mann R, Gray G, Artavanis-Tsakonas S, Bernstein ID (1998) The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood 91:4084–4091

    PubMed  CAS  Google Scholar 

  35. Jones P, May G, Healy L, Brown J, Hoyne G, Delassus S, Enver T (1998) Stromal expression of Jaggedl promotes colony formation by fetal hematopoietic progenitor cells. Blood 92:1505–1511

    PubMed  CAS  Google Scholar 

  36. Shawber C, Boulter J, Lindsell CE, Weinmaster G (1996) Jagged2: a serrate-like gene expressed during rat embryogenesis. Dev Biol 180:370–376

    Article  PubMed  CAS  Google Scholar 

  37. Luo B, Aster JC, Hasserjian RP, Kuo F, Sklar J (1997) Isolation and functional analysis of a cDNA for human Jagged2, a gene encoding a ligand for the Notchl receptor. Mol Cell Biol 17:6057–6067

    PubMed  CAS  Google Scholar 

  38. Greenberger JS, Sakakeeny MA, Humphries RK, Eaves CJ, Eckner RJ (1983) Demonstration of permanent factor-dependent multipotential (erythroid/neutrophil/basophil) hematopoietic progenitor cell lines. Proc Natl Acad Sci USA 80:2931–2935

    Article  PubMed  CAS  Google Scholar 

  39. Valtieri M, Tweardy DJ, Caracciolo D, Johnson K, Mavilio F, Altmann S, Santoli D, Rovera G (1987) Cytokine-dependent granulocytic differentiation: regulation of proliferative and differentiative responses in a murine progenitor cell line. J Immunol 138:3829–3835

    PubMed  CAS  Google Scholar 

  40. Kreider BL, Phillips PD, Prystowsky MB, Shirsat N, Pierce JH, Tushinski R, Rovera G (1990) Induction of the granulocyte-macrophage colony-stimulating factor (CSF) receptor by granulocyte CSF increases the differentiative options of a murine hematopoietic progenitor cell. Mol Cell Biol 10:4846–4853

    PubMed  CAS  Google Scholar 

  41. Milner LA, Bigas A, Kopan, Brashem-Stein C, Black M, Bernstein ID, Martin DIK (1996) Inhibition of granulocytic differentiation by mNotchl. Proc Natl Acad Sci USA 93:13014–13019

    Article  PubMed  CAS  Google Scholar 

  42. Roecklein BA, Torok-Storb B (1995) Functionally distinct human marrow stromal cell lines immortalized by transduction with the human papilloma virus E6/E7 genes. Blood 85:1005

    Google Scholar 

  43. Go MJ, Eastman DS, Artavanis-Tsakonas S (1998) Cell proliferation control by Notch signaling in Drosophila development. Development (Camb) 125:2031–2040

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Tokyo

About this paper

Cite this paper

Milner, L.A., Bigas, A. (2000). Notch in Hematopoiesis: Cell Fate Decisions and Self-Renewal of Progenitors. In: Ikeda, Y., Hata, Ji., Koyasu, S., Kawakami, Y., Hattori, Y. (eds) Cell Therapy. Keio University Symposia for Life Science and Medicine, vol 5. Springer, Tokyo. https://doi.org/10.1007/978-4-431-68506-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-68506-7_10

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-68508-1

  • Online ISBN: 978-4-431-68506-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics