Skip to main content

Plant Genetic Diversity and Plant–Pollinator Interactions Along Altitudinal Gradients

  • Chapter
  • First Online:

Part of the book series: Ecological Research Monographs ((ECOLOGICAL))

Abstract

Alpine plants are thought to be particularly vulnerable to extinction as a result of global warming because their habitat ranges are expected to shift upward until, eventually, no higher habitats remain into which they can escape. Moreover, even mountain plants distributing across wide altitudinal ranges are likely to experience range shifts, raising the possibility of local extinctions, especially of genetically and ecologically differentiated types with narrow distribution ranges. In this chapter, we examine to what extent plants genetically and ecologically differentiate along altitude and how altitudinal changes in pollinator assemblages affect floral evolution. First, by literature survey, we demonstrate that although altitudinal patterns of species and genetic diversity have been extensively investigated, few clear-cut examples of altitudinal genetic differentiation of neutral markers have been identified. On the other hand, many studies have shown that adaptive traits of plants differentiate along altitude, although their adaptive genetic background is yet to be uncovered. We then briefly introduce three case studies of mountain herbaceous plant species displaying cryptic neutral genetic or adaptive trait differentiation. The first two case studies show that the floral size of both Campanula punctata and Prunella vulgaris differs among populations along altitude and is adapted to altitudinally variable pollinator size. The third case study demonstrates that Cimicifuga simplex is composed of three genetically differentiated ecotypes that are distributed parapatrically or allopatrically along an altitudinal gradient. To meet the challenges posed by future climate warming, it is essential to clarify the genetic and ecological differentiation of mountain plants along altitude.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Angert AL (2009) The niche, limits to species’ distributions, and spatiotemporal variation in demography across the elevation ranges of two monkeyflowers. PNAS 106(Suppl 2):19693–19698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arroyo MTK, Armesto JJ, Primack RB (1985) Community studies in pollination ecology in the high temperate Andes of central Chile II. Effect of temperature on visitation rates and pollination possibilities. Plant Syst Evol 149:187–203

    Article  Google Scholar 

  • Ayana A, Bryngelsson T, Bekele E (2001) Geographic and altitudinal allozyme variation in sorghum (Sorghum bicolor (L.) Moench) landraces from Ethiopia and Eritrea. Hereditas 135:1–12

    Article  CAS  PubMed  Google Scholar 

  • Bálint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, Theissinger K, Pauls SU, Nowak C (2011) Cryptic biodiversity loss linked to global climate change. Nat Clim Chang 1:313–318

    Article  Google Scholar 

  • Barbara T, Martinelli G, Fay MF, Mayo SJ, Lexer C (2007) Population differentiation and species cohesion in two closely related plants adapted to neotropical high-altitude ‘inselbergs’, Alcantarea imperialis and Alcantarea geniculata (Bromeliaceae). Mol Ecol 16:1981–1992

    Article  CAS  PubMed  Google Scholar 

  • Bingham RA, Orthner AR (1998) Efficient pollination of alpine plants. Nature 391:238–239

    Article  Google Scholar 

  • Bingham RA, Ranker TA (2000) Genetic diversity in alpine and foothill populations of Campanula rotundifolia (Campanulaceae). Int J Plant Sci 161:403–411

    Article  PubMed  Google Scholar 

  • Buehler D, Graf R, Holderegger R, Gugerli F (2012) Contemporary gene flow and mating system of Arabis alpina in a Central European alpine landscape. Ann Bot 109:1359–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byars SG, Papst W, Hoffmann AA (2007) Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradients. Evolution 61:2925–2941

    Article  PubMed  Google Scholar 

  • Byars SG, Parsons Y, Hoffmann AA (2009) Effect of altitude on the genetic structure of an Alpine grass, Poa hiemata. Ann Bot 103:885–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canale CI, Henry P-Y (2010) Adaptive phenotypic plasticity and resilience of vertebrates to increasing climatic unpredictability. Clim Res 43:135–147

    Article  Google Scholar 

  • Chen G, Wang Y, Zhao C, Korpelainen H, Li C (2008) Genetic diversity of Hippophae rhamnoides populations at varying altitudes in the Wolong Natural Reserve of China as revealed by ISSR markers. Silvae Genet 57:29–36

    Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Clausen J (1951) Stages in the evolution of plant species. Cornell University Press, New York

    Google Scholar 

  • Clausen J, Keck DC, Hiesey WM (1940) Experimental studies on the nature of species I. Effect of varied environments on western north American plants. Carnegie Institution of Washington Publication, Washington, DC

    Google Scholar 

  • Colwell RK, Brehm G, Cardelús CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–261

    Article  CAS  PubMed  Google Scholar 

  • Conkle MT (1973) Growth data for 29 years from the California elevational transect study of ponderosa pine. For Sci 19:31–39

    Google Scholar 

  • Dittmar C, Elling W (2006) Phenological phases of common beech (Fagus sylvatica L.) and their dependence on region and altitude in Southern Germany. Eur J For Res 125:181–188

    Article  Google Scholar 

  • Dohzono I, Suzuki K (2010) Morphological and genetic differentiation in Isodon umbrosus by altitudinal variation in bumblebee pollinator assemblages. Plant Species Biol 25:20–29

    Article  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  CAS  PubMed  Google Scholar 

  • Frenzel B (1968) The Pleistocene vegetation of Northern Eurasia. Science 161:637

    Article  CAS  PubMed  Google Scholar 

  • Fujii N, Senni K (2006) Phylogeography of Japanese alpine plants: biogeographic importance of alpine region of Central Honshu in Japan. Taxon 55:43–52

    Article  Google Scholar 

  • Galen C (1985) Regulation of seed-set in Polemonium viscosum: floral scents, pollination, and resources. Ecology 66:792–797

    Article  Google Scholar 

  • Galen C (1989) Measuring pollinator-mediated selection on morphometric floral traits: bumblebees and the alpine sky pilot, Polemonium viscosum. Evolution 43:882–890

    Article  Google Scholar 

  • Galen C (1996) Rates of floral evolution: adaptation to bumblebee pollination in an alpine wildflower, Polemonium viscosum. Evolution 50:120–125

    Article  Google Scholar 

  • Galen C, Shore JS, Deyoe H (1991) Ecotypic divergence in alpine Polemonium viscosum: genetic-structure, quantitative variation, and local adaptation. Evolution 45:1218–1228

    Article  Google Scholar 

  • Garcia-Fernandez A, Segarra-Moragues JG, Widmer A, Escudero A, Iriondo JM (2012) Unravelling genetics at the top: mountain islands or isolated belts? Ann Bot 110:1221–1232

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez J, Perfectti F, Bosch J, Camacho J (2009) A geographic selection mosaic in a generalized plant-pollinator-herbivore system. Ecol Monogr 79:245–263

    Article  Google Scholar 

  • Gonzalo-Turpin H, Hazard L (2009) Local adaptation occurs along altitudinal gradient despite the existence of gene flow in the alpine plant species Festuca eskia. J Ecol 97:742–751

    Article  Google Scholar 

  • Gottfried M, Pauli H, Futschik A et al (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Chang 2:111–115

    Article  Google Scholar 

  • Groth I, Bergstrom G, Pellmyrt O (1987) Floral fragrances in Cimicifuga: chemical polymorphism and incipient speciation in Cimicifuga simplex. Biochem Syst Ecol 15:441–444

    Article  CAS  Google Scholar 

  • Grytnes JA (2003) Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography 26:291–300

    Article  Google Scholar 

  • Grytnes JA, Vetaas OR (2002) Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am Nat 159:294–304

    Article  PubMed  Google Scholar 

  • Gugerli F, Eichenberger K, Schneller J (1999) Promiscuity in populations of the cushion plant Saxifraga oppositifolia in the Swiss Alps as inferred from random amplified polymorphic DNA (RAPD). Mol Ecol 8:453–461

    Article  CAS  Google Scholar 

  • Gurevitch J (1988) Variation in leaf dissection and leaf energy budgets among populations of Achillea from an altitudinal gradient. Am J Bot 75:1298–1306

    Article  Google Scholar 

  • Hadado TT, Rau D, Bitocchi E, Papa R (2010) Adaptation and diversity along an altitudinal gradient in Ethiopian barley (Hordeum vulgare L.) landraces revealed by molecular analysis. BMC Plant Biol 10:121

    Article  CAS  Google Scholar 

  • Hahn T, Kettle CJ, Ghazoul J, Frei ER, Matter P, Pluess AR (2012) Patterns of genetic variation across altitude in three plant species of semi-dry grasslands. PLoS ONE 7, e41608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn T, Kettle CJ, Ghazoul J, Hennig EI, Pluess AR (2013) Landscape composition has limited impact on local genetic structure in mountain clover, Trifolium montanum L. J Hered 104:842–852

    Article  PubMed  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics breeding and genetic resources. Sinauer, Sunderland, pp 43–63

    Google Scholar 

  • Harder LD, Johnson SD (2009) Darwin’s beautiful contrivances: evolutionary and functional evidence for floral adaptation. New Phytol 183:530–545

    Article  PubMed  Google Scholar 

  • Hattori M, Nagano Y, Itino T (2014) Geographic flower trait variation of Aquilegia buergeriana Sieb. et Zucc. var buergeriana on Mt. Norikura and the Utsukushigahara Highland, Japan. Ame J Plant Sci 5:2686–2692. doi:10.4236/ajps.2014.518283

    Article  Google Scholar 

  • Hattori M, Nagano Y, Itino T (2015) Geographic variation in flower size and flower-visitor composition of two bumblebee-pollinated, spring-flowering herbs, Lamium album L. var. barbatum (Lamiaceae) and Meehania urticifolia (Lamiaceae). Am J Plant Sci 6:737–745. doi:10.4236/ajps.2015.65079

    Article  Google Scholar 

  • Hautier Y, Randin CF, Stöcklin J, Guisan A (2009) Changes in reproductive investment with altitude in an alpine plant. J Plant Ecol 2:125–134

    Article  Google Scholar 

  • Herrera CM, Bazaga P (2008) Adding a third dimension to the edge of a species’ range: altitude and genetic structuring in mountainous landscapes. Heredity 100:275–285

    Article  CAS  PubMed  Google Scholar 

  • Herrera CM, Castellanos MC, Medrano M (2006) Geographical context of floral evolution: towards an improved research programme in floral diversification. In: Harder LD, Barrett SCH (eds) Ecology and evolution of flowers. Oxford University Press, New York, pp 278–294

    Google Scholar 

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  CAS  PubMed  Google Scholar 

  • Hirao AS, Watanabe M, Liu Q-J, Li X, Masuzawa T, Ohara M, Wada N (2015) Low genetic diversity and high genetic divergence in southern rear-edge populations of Dryas octopetala in mountain sky islands of the Far East. Acta Phytotax Geobot 66:11–22

    Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka W, Goto S (2012) Modeling intraspecific adaptation of Abies sachalinensis to local altitude and responses to global warming, based on a 36-year reciprocal transplant experiment. Evol Appl 5:229–244

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacquemyn H, Micheneau C, Roberts DL, Pailler T (2005) Elevational gradients of species diversity, breeding system and floral traits of orchid species on Reunion Island. J Biogeogr 32:1751–1761

    Article  Google Scholar 

  • Jump AS, Hunt JM, Martinez-Izquierdo JA, Penuelas J (2006) Natural selection and climate change: temperature-linked spatial and temporal trends in gene frequency in Fagus sylvatica. Mol Ecol 15:3469–3480

    Article  CAS  PubMed  Google Scholar 

  • Jump AS, Matyas C, Penuelas J (2009) The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol Evol 24:694–701

    Article  PubMed  Google Scholar 

  • Kara N, Korol L, Isik K, Schiller G (1997) Genetic diversity in Pinus brutia Ten.: altitudinal variation. Silvae Genet 46:155–161

    Google Scholar 

  • Kenta T, Yamada A, Onda Y (2011) Clinal variation in flowering time and vernalisation requirement across a 3000-m altitudinal range in perennial Arabidopsis kamchatica ssp. kamchatica and annual lowland subspecies kawasakiana. J Ecosyst Ecogr S6:001. doi:10.4172/2157-7625.S6-001

    Google Scholar 

  • Kitayama K (1992) An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. Vegetatio 102:149–171

    Article  Google Scholar 

  • Kitzmiller JH (2005) Provenance trials of ponderosa pine in northern California. For Sci 51:595–607

    Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer, Berlin

    Book  Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Korshikov I, Mudrik E (2006) Elevation-dependent genetic variation of plants and seed embryos in the Crimea Mountain population of Pinus pallasiana D. Don. Russ J Ecol 37:79–83

    Article  CAS  Google Scholar 

  • Kuriya S, Hattori M, Nagano Y, Itino T (2015) Altitudinal flower size variation correlates with local pollinator size in a bumblebee-pollinated herb, Prunella vulgaris L. (Lamiaceae). J Evol Biol 28:1761–1769. doi:10.1111/jeb.12693

    Google Scholar 

  • Kuzume H, Itino T (2013) Congruence between pollination morphs and genotypes based on internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA in Cimicifuga simplex (Ranunculaceae). J Jpn Bot 88:176–181

    Google Scholar 

  • Machac A, Janda M, Dunn RR, Sanders NJ (2011) Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity. Ecography 34:364–371

    Article  Google Scholar 

  • Malo JE, Baonza J (2002) Are there predictable clines in plant–pollinator interactions along altitudinal gradients? The example of Cytisus scoparius (L.) Link in the Sierra de Guadarrama (Central Spain). Divers Distrib 8:365–371

    Article  Google Scholar 

  • Manel S, Gugerli F, Thuiller W, Alvarez N, Legendre P, Holderegger R, Gielly L, Taberlet P (2012) Broad‐scale adaptive genetic variation in alpine plants is driven by temperature and precipitation. Mol Ecol 21:3729–3738

    Article  PubMed  PubMed Central  Google Scholar 

  • Matter P, Kettle CJ, Ghazoul J, Pluess AR (2013) Extensive contemporary pollen-mediated gene flow in two herb species, Ranunculus bulbosus and Trifolium montanum, along an altitudinal gradient in a meadow landscape. Ann Bot 111:611–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinzer F, Goldstein G, Rundel P (1985) Morphological changes along an altitude gradient and their consequences for an Andean giant rosette plant. Oecologia 65:278–283

    Article  Google Scholar 

  • Milá B, Wayne RK, Fitze P, Smith TB (2009) Divergence with gene flow and fine-scale phylogeographical structure in the wedge-billed woodcreeper, Glyphorynchus spirurus, a Neotropical rainforest bird. Mol Ecol 18:2979–2995

    Article  PubMed  CAS  Google Scholar 

  • Montesinos-Navarro A, Wig J, Pico FX, Tonsor SJ (2011) Arabidopsis thaliana populations show clinal variation in a climatic gradient associated with altitude. New Phytol 189:282–294

    Article  PubMed  Google Scholar 

  • Nagano Y, Abe K, Kitazawa T, Hattori M, Hirao AS, Itino T (2014) Changes in pollinator fauna affect altitudinal variation of floral size in a bumblebee‐pollinated herb. Ecol Evol 4:3395–3407

    Article  PubMed  PubMed Central  Google Scholar 

  • Nattero J, Cocucci AA, Medel R (2010) Pollinator-mediated selection in a specialized pollination system: matches and mismatches across populations. J Evol Biol 23:1957–1968

    Article  CAS  PubMed  Google Scholar 

  • Navascués M, Vendramin GG, Emerson BC (2008) The effect of altitude on patterns of gene flow in the endemic Canary Island pine, Pinus canariensis. Silvae Genet 57:357–363

    Google Scholar 

  • Nishimura M, Setoguchi H (2011) Homogeneous genetic structure and variation in tree architecture of Larix kaempferi along altitudinal gradients on Mt. Fuji. J Plant Res 124:253–263

    Article  PubMed  Google Scholar 

  • Nogues-Bravo D, Araujo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–219

    Article  CAS  PubMed  Google Scholar 

  • Nosil P (2012) Ecological speciation. Oxford University Press, New York

    Book  Google Scholar 

  • Nosil P, Funk DJ, Ortiz-Barrientos D (2009) Divergent selection and heterogeneous genomic divergence. Mol Ecol 18:375–402

    Article  PubMed  Google Scholar 

  • Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114

    Article  Google Scholar 

  • Odland A, Birks H (1999) The altitudinal gradient of vascular plant richness in Aurland, western Norway. Ecography 22:548–566

    Article  Google Scholar 

  • Ohsawa T, Ide Y (2008) Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Glob Ecol Biogeogr 17:152–163

    Article  Google Scholar 

  • Ohsawa T, Ide Y (2011) Phylogeographic patterns of highland and lowland plant species in Japan. Alp Bot 121:49–61

    Article  Google Scholar 

  • Ohsawa T, Tsuda Y, Saito Y, Sawada H, Ide Y (2007) Altitudinal genetic diversity and differentiation of Quercus crispula in the Chichibu Mountains, central Japan. Int J Plant Sci 168:333–340

    Article  Google Scholar 

  • Ohsawa T, Saito Y, Sawada H, Ide Y (2008) Impact of altitude and topography on the genetic diversity of Quercus serrata populations in the Chichibu Mountains, central Japan. Flora – Morphol Distrib Funct Ecol Plants 203:187–196

    Article  Google Scholar 

  • Okuyama Y, Tanabe AS, Kato M (2012) Entangling ancient allotetraploidization in Asian Mitella: an integrated approach for multilocus combinations. Mol Biol Evol 29:429–439

    Article  CAS  PubMed  Google Scholar 

  • Pauli H, Gottfried M, Dullinger S et al (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355

    Article  CAS  PubMed  Google Scholar 

  • Pauls SU, Nowak C, Bálint M, Pfenninger M (2013) The impact of global climate change on genetic diversity within populations and species. Mol Ecol 22:925–946

    Article  PubMed  Google Scholar 

  • Pellmyr O (1986) Three pollination morphs in Cimicifuga simplex; incipient speciation due to inferiority in competition. Oecologia 68:304–307

    Article  Google Scholar 

  • Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG et al (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  CAS  PubMed  Google Scholar 

  • Pluess AR, Stöcklin J (2004) Population genetic diversity of the clonal plant Geum reptans (Rosaceae) in the Swiss Alps. Am J Bot 91:2013–2021

    Article  PubMed  Google Scholar 

  • Quiroga MP, Premoli AC (2007) Genetic patterns in Podocarpus parlatorei reveal the long-term persistence of cold-tolerant elements in the southern Yungas. J Biogeogr 34:447–455

    Article  Google Scholar 

  • Rahbek C (1995) The elevational gradient of species richness: a uniform pattern? Ecography 18:200–205

    Article  Google Scholar 

  • Reisch C, Ankea A, Markus R (2005) Molecular variation within and between ten populations of Primula farinosa (Primulaceae) along an altitudinal gradient in the northern Alps. Basic Appl Ecol 6:35–45

    Article  CAS  Google Scholar 

  • Rowe RJ (2009) Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah. Ecography 32:411–422

    Article  Google Scholar 

  • Sanders NJ, Rahbek C (2012) The patterns and causes of elevational diversity gradients. Ecography 35:1–3

    Article  Google Scholar 

  • Schneller J, Liebst B (2007) Patterns of variation of a common fern (Athyrium filix-femina; Woodsiaceae): population structure along and between altitudinal gradients. Am J Bot 94:965–971

    Article  PubMed  Google Scholar 

  • Sexton JP, Hangartner SB, Hoffmann AA (2014) Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68:1–15

    Article  CAS  PubMed  Google Scholar 

  • Shanjani PS, Vendramin GG, Calagari M (2011) Altitudinal genetic variations among the Fagus orientalis Lipsky populations in Iran. Iran J Biotechnol 9:11–20

    Google Scholar 

  • Shi M-M, Michalski SG, Chen X-Y, Durka W (2011) Isolation by elevation: genetic structure at neutral and putatively non-neutral loci in a dominant tree of subtropical forests, Castanopsis eyrei. PLoS ONE 6, e21302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrestha M, Dyer AG, Bhattarai P, Burd M, Shefferson R (2014) Flower colour and phylogeny along an altitudinal gradient in the Himalayas of Nepal. J Ecol 102:126–135

    Article  Google Scholar 

  • Speed JDM, Austrheim G, Mysterud A (2013) The response of plant diversity to grazing varies along an elevational gradient. J Ecol 101:1225–1236

    Article  Google Scholar 

  • Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Annu Rev Ecol Syst 1:307–326

    Article  Google Scholar 

  • Stortz JF, Nachman MW (2003) Natural selection drives altitudinal divergence at the albumin locus in deer mouse, Peromyscus maniculatus. Evolution 58:1342–1352

    Article  Google Scholar 

  • Sun M, Gross K, Schiestl FP (2014) Floral adaptation to local pollinator guilds in a terrestrial orchid. Ann Bot 113:289–300

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Kawaguchi LG, Toquenaga Y (2007) Estimating nest locations of bumblebee Bombus ardens from flower quality and distribution. Ecol Res 22:220–227

    Article  Google Scholar 

  • Suzuki Y, Kawaguchi LG, Munidasa DT, Toquenaga Y (2009) Do bumble bee queens choose nest sites to maximize foraging rate? Testing models of nest site selection. Behav Ecol Sociobiol 63:1353–1362

    Article  Google Scholar 

  • Svendsen JI, Alexanderson H, Astakhov VI et al (2004) Late Quaternary ice sheet history of northern Eurasia. Quat Sci Rev 23:1229–1271

    Article  Google Scholar 

  • Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Chang 50:77–109

    Article  CAS  Google Scholar 

  • Thiel-Egenter C, Gugerli F, Alvarez N et al (2009) Effects of species traits on the genetic diversity of high-mountain plants: a multi-species study across the Alps and the Carpathians. Glob Ecol Biogeogr 18:78

    Article  Google Scholar 

  • Till-Bottraud I, Gaudeul M (2002) Intraspecific genetic diversity in alpine plants. In: Körner C, Spehn EM (eds) Mountain biodiversity: a global assessment. The Parthenon Publishing Group, New York, pp 23–34

    Google Scholar 

  • Tomono T, Sota T (1997) The life history and pollination ecology of bumblebees in the alpine zone of central Japan. Jpn J Entomol 65:237–255

    Google Scholar 

  • Wang X, Fang J, Sanders NJ, White PS, Tang Z (2009) Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography 32:133–142

    Article  CAS  Google Scholar 

  • Webb CO, Ackerly DD, Mcpeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  • Wen C, Hsiao J (2001) Altitudinal genetic differentiation and diversity of Taiwan lily (Lilium longiflorum var. formosanum; Liliaceae) using RAPD markers and morphological characters. Int J Plant Sci 162:287–295

    Article  CAS  Google Scholar 

  • Wirth LR, Graf R, Gugerli F, Landergott U, Holderegger R (2010) Lower selfing rate at higher altitudes in the alpine plant Eritrichium nanum (Boraginaceae). Am J Bot 97:899–901

    Article  PubMed  Google Scholar 

  • Yamaji H, Sakakibara I, Kondo K, Shiba M, Miki E, Inagaki N, Terabayashi S, Takeda S, Aburada M et al (2005) Phytogeographic analyses of variation in Cimicifuga simplex (Ranunculaceae) based on internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA. J Jpn Bot 80:109–120

    Google Scholar 

  • Ziello C, Estrella N, Kostova M, Koch E, Menzel A (2009) Influence of altitude on phenology of selected plant species in the Alpine region (1971–2000). Clim Res 39:227–234

    Article  Google Scholar 

Download references

Acknowledgments

We thank Yusuke Nagano, Satoko Kuriya, and Haruka Kuzume for their preparation of the figures. This study was supported by the Global Environmental Research Fund (D-0904) of the Ministry of the Environment, Japan, and the Japanese Alps Inter-University Cooperative Project, and by the Research and Education Funding for Japanese Alps Inter-Universities Cooperative Project, Ministry of Education, Culture, Sports, Science and Technology, Japan. We thank the Chubu Regional Office for Nature Conservation and the Nagano Prefectural government for their permission to work in those areas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Itino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Itino, T., Hirao, A.S. (2016). Plant Genetic Diversity and Plant–Pollinator Interactions Along Altitudinal Gradients. In: Kudo, G. (eds) Structure and Function of Mountain Ecosystems in Japan. Ecological Research Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55954-2_4

Download citation

Publish with us

Policies and ethics