Skip to main content

Cold Atom Magnetometers

  • Chapter
  • 5174 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 911))

Abstract

Detection of weak magnetic fields with high spatial resolution is an important technology for various applications such as biological imaging, detection of MRI signals and fundamental physics. Cold atom magnetometry enables 10−11 T/\(\sqrt{\text{Hz}}\) sensitivities at the micron scale, that is, at the scale of a typical biological cell size. This magnetometry takes advantage of unique properties of atomic gaseous Bose-Einstein condensates with internal spin degrees of freedom. In this chapter, we first overview various state-of-the-art magnetometers, addressing their sensitivities and spatial resolutions. Then we describe properties of spinor condensates, ultracold atom magnetometers, and the latest research developments achieved in the FIRST project, especially for the detection of alternate current magnetic fields using a spin-echo-based magnetometer. We also discuss future prospects of the magnetometers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. I. Almog et al., Direct measurement of the system-environment coupling as a tool for understanding decoherence and dynamical decoupling. J. Phys. B Atom. Mol. Opt. Phys. 44, 154006 (2011). doi:10.1088/0953-4075/44/15/154006

    Article  ADS  Google Scholar 

  2. R.P. Anderson, C. Ticknor, A.I. Sidorov, B.V. Hall, Spatially inhomogeneous phase evolution of a two-component Bose-Einstein condensate. Phys. Rev. A 80, 023603 (2009). doi:http://dx.doi.org/10.1103/PhysRevA.80.023603

  3. G. Balasubramanian et al., Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009). doi:10.1038/nmat2420

    Article  ADS  Google Scholar 

  4. D. Budker, D.F.J. Kimball (eds.), Optical Magnetometry (Cambridge University Press, Cambridge/New York, 2013)

    Google Scholar 

  5. Y. Eto, H. Ikeda et al., Spin-echo-based magnetometry with spinor Bose-Einstein condensates. Phys. Rev. A 88, 031602(R) (2013). doi:10.1103/PhysRevA.88.031602

    Google Scholar 

  6. Y. Eto, S. Sekine et al., Control and detection of the Larmor precession of F=287Rb Bose-Einstein condensates by Ramsey interferometry and Spin-Echo. Appl. Phys. Express 6, 05280 (2013). doi:10.7567/APEX.6.052801

    Article  Google Scholar 

  7. J.N.S. Evans, Biomolecular NMR Spectroscopy (Oxford University Press, Oxford/New York, 1995)

    Google Scholar 

  8. E.L. Hahn, Spin echoes. Phys. Rev. 80, 581 (1950). doi:10.1103/PhysRev.80.580

    Article  ADS  Google Scholar 

  9. P. Hariharan, D. Sen, J. Sci. Instr. 36, 70 (1959). doi:10.1088/0950-7671/36/2/304

    Article  ADS  Google Scholar 

  10. J.M. Higbie et al., Direct nondestructive imaging of magnetization in a spin-1 Bose-Einstein gas. Phys. Rev. Lett. 95, 050401 (2005). doi:http://dx.doi.org/10.1103/PhysRevLett.95.050401

  11. L.R. Hunter, Tests of time-reversal invariance in atoms, molecules, and the neutron. Science 252, 73–79 (1991). doi:10.1126/science.252.5002.73

    Article  ADS  Google Scholar 

  12. J. Keeler, Understanding NMR Spectroscopy (Wiley, Chichester, 2005)

    Google Scholar 

  13. W. Ketterle, D.S. Durfee, D.M. Stamper-Kurn, Making, Probing and Understanding Bose-Einstein Condensates (1999). arXiv:cond-mat/9904034

    Google Scholar 

  14. M. Kitagawa, M. Ueda, Squeezed spin states. Phys. Rev. A 47, 5138 (1993). doi:10.1103/PhysRevA.47.5138

    Article  ADS  Google Scholar 

  15. K. Kobayashi, Y. Uchikawa, Development of a high spatial resolution SQUID magnetometer for biomagnetic measurement. IEEE Trans. Magn. 39, 3378–3380 (2003). doi:10.1109/TMAG.2003.816156

    Article  ADS  Google Scholar 

  16. I.K. Kominis, T.W. Kornack, J.C. Allred, M.V. Romalis, A subfemtotesla multichannel atomic magnetometer. Nature 422, 596–599 (2003). doi:10.1038/nature01484

    Article  ADS  Google Scholar 

  17. M. Koschorreck, N. Napolitano, B. Dubost, M.W. Mitchell, Sub-projection-noise sensitivity in broadband atomic magnetometry. Phys. Rev. Lett. 104, 093602 (2010). doi:10.1103/PhysRevLett.104.093602

    Article  ADS  Google Scholar 

  18. S. Kotler et al., Single-ion quantum lock-in amplifier. Nature 473, 61 (2011). doi:10.1038/nature10010

    Article  ADS  Google Scholar 

  19. S. Kotler, N. Akerman, Y. Glickman, R. Ozeri, Nonlinear single-spin spectrum analyzer. Phys. Rev. Lett. 110, 110503 (2013). doi:http://dx.doi.org/10.1103/PhysRevLett.110.110503

  20. J. Kronjäger et al., Spontaneous pattern formation in an antiferromagnetic quantum gas. Phys. Rev. Lett. 105, 090402 (2010). doi:http://dx.doi.org/10.1103/PhysRevLett.105.090402

  21. T. Kuwamoto, K. Araki, T. Eno, T. Hirano, Magnetic field dependence of the dynamics of87Rb spin-2 Bose-Einstein condensates. Phys. Rev. A 69, 063604 (2004). doi:http://dx.doi.org/10.1103/PhysRevA.69.063604

  22. J.R. Maze et al., Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–647 (2008). doi:10.1038/nature07279

    Article  ADS  Google Scholar 

  23. N.F. Ramsey, Molecular Beams (Oxford University Press, Oxford/New York, 1956)

    Google Scholar 

  24. M. Sadgrove et al., Ramsey interferometry using the Zeeman sublevels in a spin-2 Bose gas. J. Phys. Soc. Jpn. 82, 094002 (2013). doi:10.7566/JPSJ.82.094002

    Article  ADS  Google Scholar 

  25. J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, New York, 1993)

    Google Scholar 

  26. M. Shimogawara, H. Tanaka, K. Kazumi, Y. Haruta, MEGvision magnetoencephalograph system and its applications. Yokogawa Tech. Rep. 38, 23–27 (2004). http://www.yokogawa.com/rd/pdf/TR/rd-tr-r00038-006.pdf

  27. D.M. Stamper-Kurn, M. Ueda, Spinor Bose gases: symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys. 85, 1191 (2013). doi:http://dx.doi.org/10.1103/RevModPhys.85.1191

    Google Scholar 

  28. J.M. Taylor et al., High-sensitivity diamond magnetometer with nanoscale resolution. Nat. Phys. 4, 810 (2008). doi:10.1038/nphys1075

    Article  Google Scholar 

  29. S. Tojo et al., Controlling phase separation of binary Bose-Einstein condensates via mixed-spin-channel Feshbach resonance. Phys. Rev. A 82, 033609 (2010). doi:http://dx.doi.org/10.1103/PhysRevA.82.033609

  30. D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Scientific, Singapore, 1998)

    Google Scholar 

  31. M. Vengalattore et al., High-Resolution magnetometry with a spinor Bose-Einstein condensate. Phys. Rev. Lett. 98, 200801 (2007). doi:http://dx.doi.org/10.1103/PhysRevLett.98.200801

  32. S. Wildermuth, S. Hofferberth, I. Lesanovsky, S. Groth et al., Sensing electric and magnetic fields with Bose-Einstein condensates. Appl. Phys. Lett. 88, 264103 (2006). doi:10.1063/1.2216932

    Article  ADS  Google Scholar 

  33. S. Wildermuth, S. Hofferberth, I. Leanovsky, E. Haller et al., Bose-Einstein condensates: microscopic magnetic-field imaging. Nature 435, 440 (2005). doi:10.1038/435440a

    Article  ADS  Google Scholar 

  34. F. Wolfgramm et al., Squeezed-Light optical magnetometry. Phys. Rev. Lett. 105, 053601 (2010). doi:10.1103/PhysRevLett.105.053601

    Article  ADS  Google Scholar 

  35. M. Yasunaga, M. Tsubota, Spin Echo in Spinor dipolar Bose-Einstein condensates. Phys. Rev. Lett. 101, 220401 (2008). doi:http://dx.doi.org/10.1103/PhysRevLett.101.22040

  36. M. Yasunaga, M. Tsubota, Magnetic resonance, especially spin echo, in spinor Bose-Einstein condensates. J. Phys. Conf. Ser. 150, 032127 (2009). doi:10.1088/1742-6596/150/3/032127

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank H. Ikeda, H. Suzuki, S. Hasegawa, Y. Tomiyama, S. Sekine, and H. Saito for their contribution to the research reported in this chapter. We also thank T. Ichikawa, S. Tojo and T. Kuwamoto for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takuya Hirano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Eto, Y., Sadrove, M., Hirano, T. (2016). Cold Atom Magnetometers. In: Yamamoto, Y., Semba, K. (eds) Principles and Methods of Quantum Information Technologies. Lecture Notes in Physics, vol 911. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55756-2_6

Download citation

Publish with us

Policies and ethics