Skip to main content

Segmentation Study of Foreign Exchange Market

  • Chapter
  • First Online:
Book cover Applied Data-Centric Social Sciences
  • 903 Accesses

Abstract

This chapter explains a recursive segmentation procedure under normal distribution assumptions. The Akaike information criterion between independently identically distributed Gaussian samples and two successive segments drawn from different Gaussian distributions is used as a discriminator to segment time series. The Jackknife method is employed in order to evaluate a statistical significance level. This chapter shows univariate and multivariate cases. The proposed method is performed for artificial time series consisting of two segments with different statistics. Furthermore, log-return time series of currency exchange rates for 30 currency pairs for the period from January 4, 2001 to December 30, 2011 are divided into 11 segments with the proposed method. It is confirmed that some segment corresponds to historical events recorded as critical situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The selected currency pairs are listed as AUD/JPY, BRL/JPY, CAD/JPY, CHF/JPY, EUR/AUD, EUR/BRL, EUR/CAD, EUR/CHF, EUR/GBP, EUR/JPY, EUR/MXN, EUR/NZD, EUR/SGD, EUR/USD, EUR/ZAR, GBP/JPY, MXN/JPY, NZD/JPY, SGD/JPY, USD/AUD, USD/BRL, USD/CAD, USD/CHF, USD/GBP, USD/JPY, USD/MXN, USD/NZD, USD/SGD, USD/ZAR, and ZAR/JPY.

References

  1. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Caski, F. (eds.) Proceeding of the Second International Symposium on Information Theory, pp. 267–281. Akademiai Kiado, Budapest (1973)

    Google Scholar 

  2. Alexandersson, H.: A homogeneity test applied to precipitation data. J. Climatol. 6, 661–675 (1986)

    Article  Google Scholar 

  3. Alexandersson, H., Moberg, A.: Homogenization of Swedish temperature data. Part I—homogeneity test for linear trends. Int. J. Climatol. 17, 25–34 (1997)

    Article  Google Scholar 

  4. Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes—Theory and Application. Prentice-Hall, Upper Saddle Revier (1993)

    Google Scholar 

  5. Bouchaud, J.P., Potters, M.: Theory of Financial Risks and Derivative Pricing- From Statistical Physics to Risk Management. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  6. Brodsky, B.E., Darkhovsky, B.S.: Nonparametric Methods in Change-Point Problems. Kluwer Academic Publishers, Dordrecht (1993)

    Book  Google Scholar 

  7. Burda, Z., Görlich, A., Jarosz, A., Jurkiewicz, J.: Signal and Noise in Correlation Matrix. Physica A 343, 295–310 (2004)

    Article  MathSciNet  Google Scholar 

  8. Chen, J., Gupta, A.K.: Parametric Statistical Change Point Analysis- With Applications to Genetics. Medicine and Finance. Birkhäuser, Boston (2000)

    Book  Google Scholar 

  9. Chen, J., Gupta, A.K.: Statistical inference of covariance change points in Gaussian model. Statistics 38, 17–28 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheong, S.A., Fornia, R.P., Lee, G.H.T., Kok, J.L., Yim, W.S., Xu, D.Y., Zhang, Y.: The Japanese economy in crises—a time series segmentation study. Econ. E-J., 2012–5 (2012) URL http://www.economics-ejournal.org

  11. Cho, H., Fryzlewicz, P.: Multiscale interpretation of taut string estimation and its connection to unbalanced Haar wavelets. Stat. Comput. 21, 671–681 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chow, G.C.: Tests of equality between sets of coefficients in two linear regressions. Econometrica 28, 591–605 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  13. Csörgö, M., Horváth, L.: Limit Theorems in Change-Point Analysis. Wiley, New York (1997)

    MATH  Google Scholar 

  14. Ducré-Robitaille, J.F., Vincent, L.A., Boulet, G.: Comparison of techniques for detection of discontinuities in temperature series. Int. J. Climatol. 23, 1087–1101 (2003)

    Article  Google Scholar 

  15. Easterling, D.R., Peterson, T.C.: A new method for detecting undocumented discontinuities in climatological time series. Int. J. Climatol. 15, 369–377 (1995)

    Article  Google Scholar 

  16. Giraitis, L., Leipus, R.: Testing and estimating in the change-point problem of the spectral function. Lith. Math. J. 32, 15–29 (1992)

    Article  MathSciNet  Google Scholar 

  17. Giraitis, L., Leipus, R.: Functional CLT for nonparametric estimates of the spectrum and change-point problem for a spectral function. Lith. Math. J. 30, 302–322 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Goldfeld, S.M., Quandt, R.E.: A Markov model for switching regressions. J. Econometrics 1, 3–15 (1973)

    Article  MATH  Google Scholar 

  19. Gopikrishnan, P., Plerou, V., Liu, Y., Amaral, L.A.N., Gabaix, X., Stanley, H.E.: Scaling and correlation in financial time series. Phys. A 287, 362–373 (2000)

    Article  MathSciNet  Google Scholar 

  20. Gullett, D.W., Vincent, L., Sajecki, P.J.F.: Testing homogeneity in temperature series at Canadian climate stations. CCC report 90–4, Climate Research Branch, Meteorological Service of Canada, Ontario, Canada (1990).

    Google Scholar 

  21. Hamilton, J.D.: Regime-switching models (2005) URL dss.ucsd.edu/ jhamilto/palgrav1.pdf.

    Google Scholar 

  22. Hansen, B.E.: Testing for parameter instability in linear models. J. Policy Model. 14, 517–533 (1992)

    Article  Google Scholar 

  23. Hawkins, D.M.: Testing a sequence of observations for a shift in location. J. Am. Stat. Assoc. 72, 180–186 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hawkins, D.M.: Fitting multiple change-point models to data. Comput. Stat. Data Anal. 37, 323–341 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Karl, T.R., Williams, C.N. Jr: An approach to adjusting climatological time series for discontinuous inhomogeneities. J. Clim. Appl. Meteorol. 26, 1744–1763 (1987)

    Google Scholar 

  26. Kawahara, Y., Sugiyama, M.: Sequential change-point detection basedon direct density-ratio estimation. Stat. Anal. Data Min. 5, 114–127 (2012)

    Article  MathSciNet  Google Scholar 

  27. Kim, C.J., Piger, J.M., Startz, R.: Estimation of Markov Regime-switching regression Models with endogenous swithing. Working Paper 2003–015C, Federal Researve Bank of St. Luis (2003) URL http://research.stlouisfed.org/wp/2003/2003-015.pdf

  28. Laloux, L., Cizeau, P., Bouchaud, J.P., Potters, M.: Noise dressing of financial correlation matrices. Phys. Rev. Lett. 83, 1467–1470 (1999)

    Article  Google Scholar 

  29. Lavielle, M., Teyssière, G.: Detection of multiple change-points in multivariate time series. Lith. Math. J. 46, 287–306 (2006)

    Article  MATH  Google Scholar 

  30. Mandelbrot, B.: The variation of certain speculative prices. J. Bus. 36, 394–419 (1963)

    Article  Google Scholar 

  31. Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics- Correlations and Complexity in Finance. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  32. Miao, B.Q., Zhao, L.C.: Detection of change points using rank methods. Commun. Stat. 17, 3207–3217 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Neyman, J., Pearson, K.: On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. Roy. Soc. Lond. A 231, 289–337 (1933)

    Article  Google Scholar 

  34. Ombao, H., Von Sachs, R., Guo, W.: SLEX analysis of multivariate nonstationary time series. J. Am. Stat. Assoc. 100, 519–531 (2005)

    Article  MATH  Google Scholar 

  35. Ombao, H.C., Raz, J.A., Von Sachs, R., Guo, W.: The SLEX model of a non-stationary random process. Ann. Inst. Stat. Math. 54, 171–200 (2002)

    Article  MATH  Google Scholar 

  36. Papp, G., Pafka, S., Nowak, M.A., Kondor, I.: Random matrix filtering in portfolio optimization. Acta Phys. Pol. B 36, 2757–2765 (2005)

    MathSciNet  Google Scholar 

  37. Perreault, L., Haché, M., Slivitzky, M., Bobée, B.: Detection of changes in precipitation and runoff over eastern Canada and US using a Bayesian approach. Stochast. Environ. Res. Risk Assess. 13, 201–216 (1999)

    Article  MATH  Google Scholar 

  38. Perreault, L., Bernier, J., Bobée, B., Parent, E.: Bayesian change-point analysis in hydrometeorological time series. Part 1. The normal model revisited. J. Hydrol. 235, 221–241 (2000)

    Article  Google Scholar 

  39. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Stanley, H.E.: Universal and nonuniversal properties of cross correlations in financial time series. Phys. Rev. Lett. 83, 1471–1474 (1999)

    Article  Google Scholar 

  40. Quandt, R.E., Ramsey, J.B.: Estimating mixtures of normal distributions and switching regressions. J. Am. Stat. Assoc. 73, 730–738 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sato, A.-H.: Recursive segmentation procedure based on the Akaike information criterion test. 2013 IEEE 37th Annual Signature Conference of Computer Software and Applications Conference (COMPSAC), pp. 226–233 (2013)

    Google Scholar 

  42. Sen, A., Srivastava, M.S.: On tests for detecting change in the mean. The Annals of Statistics 3, 98–108 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shiryaev, A.N., Zhitlukhin, M.V.: Optimal stopping problems for a Brownian motion with a disorder on a finite interval (2012) arXiv:1212.3709

  44. Vert, J., Bleakley, K.: Fast detection of multiple change-points shared by many signals using group LARS. Adv. Neural Info. Process. Syst. 23, 2343–2351 (2010)

    Google Scholar 

  45. Vincent, L.A.: A technique for the identification of inhomogeneities in Canadian temperature series. J. Clim. 11, 1094–1104 (1998)

    Article  Google Scholar 

  46. Wilks, S.S.: The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60–62 (1938)

    Article  Google Scholar 

  47. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc. B 68, 49–67 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to express his sincere gratitude to Prof. Zdzislaw Burda of Jagiellonian University for constructive comments and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aki-Hiro Sato .

Appendix A: Derivation of the Likelihood Function

Appendix A: Derivation of the Likelihood Function

Firstly, let us derive the likelihood function of the i.i.d \(M\)-dimensional Gaussian distribution \(p(\varvec{x};\varvec{\mu },\varvec{C})\). The log–likelihood value is calculated as follows:

$$\begin{aligned} \ln L_1&= \sum _{s=1}^T\ln p(\varvec{x}(s); \varvec{\mu }, \varvec{C}) \nonumber \\&= T \times \frac{1}{T} \sum _{s=1}^T\ln p(\varvec{x}(s); \varvec{\mu }, \varvec{C})\nonumber \\&\approx T \int \limits _{-\infty }^{\infty }\text{ d }x_1 \cdots \int \limits _{-\infty }^{\infty } \text{ d }x_M p(\varvec{x}; \varvec{\mu }, \varvec{C}) \ln p(\varvec{x}; \varvec{\mu }, \varvec{C}) \nonumber \\&= -\frac{T}{2}\ln |\varvec{C}| - \frac{TM}{2}\ln (2\pi ) - \frac{TM}{2}. \end{aligned}$$
(6.39)

Replacing true parameters \({\varvec{C}}\) as its maximum likelihood estimators \(\hat{\varvec{C}}\), one has

$$\begin{aligned} \ln L_1 = -\frac{T}{2}\ln |\hat{\varvec{C}}| - \frac{TM}{2}\ln (2\pi ) - \frac{TM}{2}. \end{aligned}$$
(6.40)

The log-likelihood value \(\ln L_2(t)\) of the alternative model expressed in Eq. (6.15) is similarly computed as

$$\begin{aligned} \ln L_2(t) =&\sum _{s=1}^t\ln p(\varvec{x}(s); \varvec{\mu }_L, \varvec{C}_L) + \sum _{s=t+1}^T\ln p(\varvec{x}(s); \varvec{\mu }_R, \varvec{C}_R) \nonumber \\ \approx&t \int \limits _{-\infty }^{\infty }\text{ d }x_1 \cdots \int \limits _{-\infty }^{\infty } \text{ d }x_M p(\varvec{x}; \varvec{\mu }_L, \varvec{C}_L) \ln p(\varvec{x}; \varvec{\mu }_L, \varvec{C}_L)\nonumber \\&+\, (T-t) \int \limits _{-\infty }^{\infty }\text{ d }x_1 \cdots \int \limits _{-\infty }^{\infty } \text{ d }x_M p(\varvec{x}; \varvec{\mu }_R, \varvec{C}_R) \ln p(\varvec{x}; \varvec{\mu }_R, \varvec{C}_R) \nonumber \\ =&-\frac{t}{2}\ln |\varvec{C}_L| - \frac{tM}{2}\ln (2\pi ) - \frac{tM}{2} \nonumber \\&-\, \frac{T-t}{2}\ln |\varvec{C}_R| - \frac{(T-t)M}{2}\ln (2\pi ) - \frac{(T-t)M}{2} \nonumber \\ =&-\frac{t}{2}\ln |\varvec{C}_L| -\frac{T-t}{2}\ln |\varvec{C}_R| - \frac{TM}{2}\ln (2\pi ) - \frac{TM}{2}. \end{aligned}$$
(6.41)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Sato, AH. (2014). Segmentation Study of Foreign Exchange Market. In: Applied Data-Centric Social Sciences. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54974-1_6

Download citation

Publish with us

Policies and ethics