Skip to main content

Nanoporous Gold Catalyst for Highly Selective Semihydrogenation of Alkynes: Remarkable Effect of Amine Additives

  • Chapter
  • First Online:

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The unsupported nanoporous gold catalyst was firstly been reported for catalyzing the highly selective semihydrogenation of alkynes with organosilanes and water as the hydrogen source. Under the optimized reaction conditions, the present semihydrogenation of various terminal- and internal alkynes affords the corresponding alkenes in high chemical yields and excellent Z-selectivity without any over-reduction products. The use of DMF as solvent, which generates amines in situ, or pyridine as an additive is crucial to suppress the association of hydrogen atoms on AuNPore to form H2 gas, which is unable to reduce alkynes on the unsupported gold catalysts. The AuNPore catalyst can be readily recovered and reused without any loss of catalytic activity. In addition, the SEM and TEM characterization of nanoporosity show that the AuNPore catalyst has a bicontinuous 3D structure and a high density of atomic steps and kinks on ligament surfaces, which should be one of the important origins of catalytic activity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Zielasek V, Jürgens B, Schulz C et al (2006) Gold catalysts: nanoporous gold foams. Angew Chem Int Ed 45:8241–8244

    Article  CAS  Google Scholar 

  2. Xu C, Su J, Xu X et al (2007) Low temperature CO oxidation over unsupported nanoporous gold. J Am Chem Soc 129:42–43

    Article  CAS  Google Scholar 

  3. Xu C, Xu X, Su J et al (2007) Research on unsupported nanoporous gold catalyst for CO oxidation. J Catal 252:243–248

    Article  CAS  Google Scholar 

  4. Wittstock A, Neumann B, Schaefer A et al (2009) Nanoporous Au: an unsupported pure gold catalyst? J Phys Chem C 113:5593–5600

    Article  CAS  Google Scholar 

  5. Wang LC, Jin HJ, Widmann D et al (2011) Dynamic studies of CO oxidation on nanoporous Au using a TAP reactor. J Catal 278:219–227

    Article  CAS  Google Scholar 

  6. Wittstock A, Zielasek V, Biener J et al (2010) Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327:319–322

    Article  CAS  Google Scholar 

  7. Asao N, Hatakeyama N, Menggenbateer et al (2012) Aerobic oxidation of alcohols in the liquid phase with nanoporous gold catalysts. Chem Commun 48:4540–4542

    Article  CAS  Google Scholar 

  8. Yin H, Zhou C, Xu C, Liu P et al (2008) Aerobic oxidation of d-Glucose on Support-free nanoporous gold. J Phys Chem C 112:9673–9678

    Article  CAS  Google Scholar 

  9. Kosuda KM, Wittstock A, Friend CM et al (2012) Oxygen-mediated coupling of alcohols over nanoporous gold catalysts at ambient pressures. Angew Chem Int Ed 51:1698–1701

    Article  CAS  Google Scholar 

  10. Zhang J, Liu P, Ma H et al (2007) Nanostructured porous gold for methanol electro-oxidation. J Phys Chem C 111:10382–10388

    Article  CAS  Google Scholar 

  11. Yu C, Jia F, Ai Z et al (2007) Direct oxidation of methanol on self-supported nanoporous gold film electrodes with high catalytic activity and stability. Chem Mater 19:6065–6067

    Article  CAS  Google Scholar 

  12. Zeis R, Lei T, Sieradzki K et al (2008) Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J Catal 253:132–138

    Article  CAS  Google Scholar 

  13. Forty AJ (1979) Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282:597–598

    Article  CAS  Google Scholar 

  14. Erlebacher J, Aziz MJ, Karma A et al (2001) Evolution of nanoporosity in dealloying. Nature 410:450–453

    Article  CAS  Google Scholar 

  15. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Che Int Ed 45:7896–7936

    Article  Google Scholar 

  16. Pina CD, Falletta E, Prati L et al (2008) Selective oxidation using gold. Chem Soc Rev 37:2077–2095

    Article  CAS  Google Scholar 

  17. Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126

    Article  CAS  Google Scholar 

  18. Matsumoto T, Ueno M, Wang N et al (2008) Recent advances in immobilized metal catalysts for environmentally benign oxidation of alcohols. Chem-Asian J 3:196–214

    Article  CAS  Google Scholar 

  19. Corma A, Leyva-Pérez A, Sabater MJ (2011) Gold-Catalyzed Carbon–Heteroatom Bond-Forming Reactions. Chem Rev 111:1657–1712

    Article  CAS  Google Scholar 

  20. Fujita T, Guan P, McKenna K et al (2012) Atomic origins of the high catalytic activity of nanoporous gold. Nature Mater 11:775–780

    Article  CAS  Google Scholar 

  21. Bond GC, Louis C, Thompson DT (2006) Catalysis by gold. Imperial College Press, London, Chapter 9, p. 244

    Google Scholar 

  22. McEwan L, Julius M, Roberts S et al (2010) A review of the use of gold catalysts in selective hydrogenation reactions Lynsey McEwana. Gold Bull 43:298–306

    Article  CAS  Google Scholar 

  23. Fujitani T, Nakamura I, Akita T et al (2009) Hydrogen dissociation by gold clusters. Angew Chem Int Ed 48:9515–9518

    Article  CAS  Google Scholar 

  24. Hauwert P, Maestri G, Sprengers J et al (2008) Transfer semihydrogenation of alkynes catalyzed by a zero-valent palladium N-heterocyclic carbene complex. Angew Chem Int Ed 47:3223–3226

    Article  CAS  Google Scholar 

  25. La Pierre HS, Arnold J, Toste FD (2011) Selective semihydrogenation of alkynes catalyzed by a cationic vanadium bisimido complex. Angew Chem Int Ed 50:3900–3903

    Article  CAS  Google Scholar 

  26. Gianetti TL, Tomson NC, Arnold J et al (2011) Z-selective, catalytic internal alkyne semihydrogenation under H2/CO mixtures by a niobium(III) imido complex. J Am Chem Soc 133:14904–14907

    Article  CAS  Google Scholar 

  27. Shen R, Chen T, Zhao Y et al (2011) Facile regio- and stereoselective hydrometalation of alkynes with a combination of carboxylic acids and group 10 transition metal complexes: selective hydrogenation of alkynes with formic acid. J Am Chem Soc 133:17037–17044

    Article  CAS  Google Scholar 

  28. Lindlar H (1952) Ein neuer katalysator für selektive hydrierungen. Helv Chim Acta 35:446–450

    Article  CAS  Google Scholar 

  29. Savoia D, Tagliavini E, Trombini C et al (1981) Active metals from potassium-graphite. Highly dispersed nickel on graphite as a new catalyst for the stereospecific semihydrogenation of alkynes. J Org Chem 46:5340–5343

    Article  CAS  Google Scholar 

  30. Brunet JJ, Caubere P (1984) Activation of reducing agents. Sodium hydride containing complex reducing agents. 20. Pdc, a new, very selective heterogeneous hydrogenation catalyst. J Org Chem 49:4058–4060

    Article  CAS  Google Scholar 

  31. Gruttadauria M, Noto R, Deganello G et al (1999) Efficient semihydrogenation of the C-C triple bond using palladium on pumice as catalyst. Tetrahedron Lett 40:2857–2858

    Article  CAS  Google Scholar 

  32. Gruttadauria M, Liotta LF, Noto R et al (2001) Palladium on pumice: new catalysts for the stereoselective semihydrogenation of alkynes to (Z)-alkenes. Tetrahedron Lett 42:2015–2017

    Article  CAS  Google Scholar 

  33. Alonso F, Osante I, Yus M (2006) Highly stereoselective semihydrogenation of alkynes promoted by nickel(0) nanoparticles. Adv Synth Catal 348:305–308

    Article  CAS  Google Scholar 

  34. Hori J, Murata K, Sugai T et al (2009) Highly active and selective semihydrogenation of alkynes with the palladium nanoparticles-tetrabutylammonium borohydride catalyst system. Adv Synth Catal 351:3143–3149

    Article  CAS  Google Scholar 

  35. Venkatesan R, Prechtl MH, Scholten JD et al (2011) Palladium nanoparticle catalysts in ionic liquids: synthesis, characterisation and selective partial hydrogenation of alkynes to Z-alkenes. J Mater Chem 21:3030–3036

    Article  CAS  Google Scholar 

  36. Wu J, Wang K, Li Y et al (2011) Semihydrogenation of phenylacetylene catalyzed by palladium nanoparticles supported on organic group modified silica. Adv Mater Res 233–235:2109–2112

    Article  CAS  Google Scholar 

  37. Takahashi Y, Hashimoto N, Hara T et al (2011) Highly efficient Pd/SiO2–dimethyl sulfoxide catalyst system for selective semihydrogenation of alkynes. Chem Lett 40:405–407

    Article  CAS  Google Scholar 

  38. Segura Y, López N, Pérez-Ramíez J (2007) Origin of the superior hydrogenation selectivity of gold nanoparticles in alkyne+alkene mixtures: Triple- versus double-bond activation. J Catal 247:383–386

    Article  CAS  Google Scholar 

  39. Jia J, Haraki K, Kondo JN et al (2000) Selective hydrogenation of acetylene over Au/Al2O3 catalyst. J Phys Chem B 104:11153–11156

    Article  CAS  Google Scholar 

  40. Choudhary TV, Sivadinarayana C, Datye AK et al (2003) Acetylene hydrogenation on Au-based catalysts. Catal Letters 86:1–8

    Article  CAS  Google Scholar 

  41. Azizi Y, Petit C, Pitchon V (2008) Formation of polymer-grade ethylene by selective hydrogenation of acetylene over Au/CeO2 catalyst. J Catal 256:338–344

    Article  CAS  Google Scholar 

  42. Nikolaev SA, Smirnov VV (2009) Synergistic and size effects in selective hydrogenation of alkynes on gold nanocomposites. Catal Today 147S:S336–S341

    Article  CAS  Google Scholar 

  43. Asao N, Ishikawa Y, Hatakeyama N et al (2010) Nanostructured materials as catalysts: nanoporous-gold-catalyzed oxidation of organosilanes with water. Angew Chem Int Ed 49:10093–10095

    Article  CAS  Google Scholar 

  44. Tanaka S, Kaneko T, Asao N et al (2011) A nanostructured skeleton catalyst: suzuki-coupling with a reusable and sustainable nanoporous metallic glass Pd-catalyst. Chem Commun 47:5985–5987

    Article  CAS  Google Scholar 

  45. Kaneko T, Tanaka S, Asao N et al (2011) Reusable and sustainable nanostructured skeleton catalyst: heck reaction with nanoporous metallic glass Pd (PdNPore) as a support, stabilizer and ligand-free catalyst. Adv Synth Catal 353:2927–2932

    Article  CAS  Google Scholar 

  46. Jin T, Yan M, Menggenbateer et al (2011) Nanoporous copper metal catalyst in click chemistry: nanoporosity-dependent activity without supports and bases. Adv Synth Catal 353:3095–3100

    Article  CAS  Google Scholar 

  47. Asao N, Meggenbateer SY et al (2012) Nanoporous gold-catalyzed [4+2] benzannulation between ortho-alkynylbenzaldehydes and alkynes. Synlett 23:66–69

    Article  CAS  Google Scholar 

  48. Asao N, Jin T, Tanaka S et al (2012) From molecular catalysts to nanostructured materials skeleton catalysts. Pure Appl Chem 84:1771–1784

    Article  CAS  Google Scholar 

  49. Jin T, Yan M, Yamamoto Y (2012) Click chemistry of alkyne-azide cycloaddition using nanostructured copper catalysts. ChemCatChem 4:1217–1219

    Article  CAS  Google Scholar 

  50. Mohr C, Hofmeister H, Radnik J et al (2003) Identification of active sites in gold-catalyzed hydrogenation of acrolein. J Am Chem Soc 125:1905–1911

    Article  CAS  Google Scholar 

  51. Corma A, Boronat M, Gonzalez S et al (2007) On the activation of molecular hydrogen by gold: a theoretical approximation to the nature of potential active sites. Chem Commun 32:3371–3373

    Article  CAS  Google Scholar 

  52. Zhu Y, Qian H, Drake BA et al (2010) Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of α, β-unsaturated ketones and aldehydes. Angew Chem Int Ed 49:1295–1298

    Article  CAS  Google Scholar 

  53. Schreiner S, Yu JY, Vaska L (1988) Carbon dioxide reduction via homogeneous catalytic synthesis and hydrogenation of N,N-dimethylformamide. Inorg Chim Acta 147:139–141

    Article  CAS  Google Scholar 

  54. Sharma HK, Panel KH (2009) The photochemical irradiation of R3SiH in the presence of [(η5-C5H5)Fe(CO)2CH3] in DMF leads to disiloxanes not disilanes. Angew Chem Int Ed 48:7052–7054

    Google Scholar 

  55. Itazaki M, Ueda K, Nakazawa H et al (2009) Iron-catalyzed dehydrogenative coupling of tertiary silanes. Angew Chem Int Ed 48:3313–3316

    Article  CAS  Google Scholar 

  56. Brunet JJ, Caubere P (1984) Activation of reducing agents. Sodium hydride containing complex reducing agents. 20. Pdc, a new, very selective heterogeneous hydrogenation catalyst. J Org Chem 49:4058–4060

    Article  CAS  Google Scholar 

  57. Heathcock CH, Ratcliffe R (1971) Stereoselective total synthesis of the guaiazulenic sesquiterpenoids.alpha.-bulnesene and bulnesol. J Am Chem Soc 93:1746–1757

    Article  CAS  Google Scholar 

  58. Hönig H, Seufer-Wasserthal P, Weber H (1990) Chemo-enzymatic synthesis of all isomeric 3-phenylserines and –isoserines. Tetrahedron 46:3841–3850

    Article  Google Scholar 

  59. Bridier B, López N, Pérez-Ramírez J (2010) Molecular understanding of alkyne hydrogenation for the design of selective catalysts. Dalton Trans 39:8412–8419

    Article  CAS  Google Scholar 

  60. Noujima A, Mitsudome T, Mizugaki T et al (2011) Selective deoxygenation of epoxides to alkenes with molecular hydrogen using a hydrotalcite-supported gold catalyst: a concerted effect between gold nanoparticles and basic sites on a support. Angew Chem Int Ed 50:2986–2989

    Article  CAS  Google Scholar 

  61. Fang M, Machalaba N, Sánchez-Delgado RA (2011) Hydrogenation of arenes and N-heteroaromatic compounds over ruthenium nanoparticles on poly(4-vinylpyridine): a versatile catalyst operating by a substrate-dependent dual site mechanism. Dalton Trans 40:10621–10632

    Article  CAS  Google Scholar 

  62. Goethals M, Zeegers-Huyskens T (1995) FT-IR Study of the interaction between H2O, D2O, HOD, and pyridines. Spectrosc Lett 28:1125–1135

    Article  CAS  Google Scholar 

  63. Okitsu T, Sato K, Potewar TM et al (2011) Iodocyclization of hydroxylamine derivatives based on the control of oxidative aromatization leading to 2,5-dihydroisoxazoles and isoxazoles. J Org Chem 76:3438–3449

    Article  CAS  Google Scholar 

  64. Zhao L, Lu X, Xu W (2005) Palladium(II)-catalyzed enyne coupling reaction initiated by acetoxypalladation of alkynes and quenched by protonolysis of the carbon–palladium bond. J Org Chem 70:4059–4063

    Article  CAS  Google Scholar 

  65. Huang JM, Lin JQ, Chen DS (2012) Electrochemically supported deoxygenation of epoxides into alkenes in aqueous solution. Org Lett 14:22–25

    Article  CAS  Google Scholar 

  66. Woolven H, González-Rodríguez C, Marco I et al (2011) DABCO-bis(sulfur dioxide), DABSO, as a convenient source of sulfur dioxide for organic synthesis: utility in sulfonamide and sulfamide preparation. Org Lett 13:4876–4878

    Article  CAS  Google Scholar 

  67. Yu JY, Kuwano R (2009) Rhodium-catalyzed cross-coupling of organoboron compounds with vinyl acetate. Angew Chem Int Ed 48:7217–7220

    Article  CAS  Google Scholar 

  68. Shen R, Chen T, Zhao Y et al (2011) Facile regio- and stereoselective hydrometalation of alkynes with a combination of carboxylic acids and group 10 transition metal complexes: selective hydrogenation of alkynes with formic acid. J Am Chem Soc 133:17037–17044

    Article  CAS  Google Scholar 

  69. Oppolzer W, Stammen B (1997) On the faciality of intramolecular palladium(0)-catalysed “metallo-ene-type” cyclisations. Tetrahedron 53:3577–3586

    Article  CAS  Google Scholar 

  70. Kim IS, Dong GR, Jung YH (2007) Palladium(II)-catalyzed isomerization of olefins with tributyltin hydride. J Org Chem 72:5424–5426

    Article  CAS  Google Scholar 

  71. Littke AF, Fu GC (2001) A versatile catalyst for heck reactions of aryl chlorides and aryl bromides under mild conditions. J Am Chem Soc 123:6989–7000

    Article  CAS  Google Scholar 

  72. Walter C, Oestreich M (2008) Catalytic asymmetric C-Si bond formation to acyclic α, β-unsaturated acceptors by RhI-catalyzed conjugate silyl transfer using a Si-B linkage. Angew Chem Int Ed 47:3818–3820

    Article  CAS  Google Scholar 

  73. Belger C, Neisius NM, Plietker BA (2010) Selective Ru-catalyzed semireduction of alkynes to Z olefins under transfer-hydrogenation conditions. Chem Eur J 16:12214–12220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Yan .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Yan, M. (2014). Nanoporous Gold Catalyst for Highly Selective Semihydrogenation of Alkynes: Remarkable Effect of Amine Additives. In: Development of New Catalytic Performance of Nanoporous Metals for Organic Reactions. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54931-4_3

Download citation

Publish with us

Policies and ethics