Skip to main content

Inner Ear Anomalies and Vestibular-Evoked Myogenic Potentials (VEMP)

  • Chapter
  • First Online:
  • 1331 Accesses

Part of the book series: Modern Otology and Neurotology ((MODOTOL))

Abstract

Inner ear malformations represent a major inner ear disorder in approximately 20 % of children with congenital sensorineural hearing loss. They are usually characterized by profound hearing loss, and their development delays gross motor functions such as head control or independent walking, because such functions are related to abnormal inner ear structures. However, it is not easy to unequivocally determine whether vestibular sensory cells of semicircular canals and otolith organs or primary vestibular afferent neurons are present in patients with inner ear malformations, particularly common cavity deformity. In an embryological study, it has been found that, in the human fetal developmental stage, the vestibular system develops earlier than the cochlear system. Thus, it is speculated that sensory cells of vestibular end organs and vestibular afferent neurons may be present in patient with inner ear malformations, which is similar to early-stage inner ear development.

In our study, we reported that VEMPs could be elicited with cochlear implant switched on and suggested that the electrical stimulation of a cochlear implant may directly stimulate the inferior vestibular nerve. If VEMPs are evoked with the cochlear implant switched on, it suggests that some of the inferior vestibular neurons are present. In contrast, if VEMPs are absent with the cochlear implant switched on, it suggests that the inferior vestibular neurons may be absent.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Popper AN, Fay RR (1973) Sound detection and processing by teleost fishes: a critical review. J Acoust Soc Am 53:1515–1529

    Article  CAS  PubMed  Google Scholar 

  2. Tullio P (1916) Sulla funzione dei canali semicircolari. Le attrazione e le repulsion acustiche e le ‘correnti sonore’ nei liquidi. Arch Fisiol 14:402

    Google Scholar 

  3. Bleeker JD, Vries D (1949) The microphonic activity of the labyrinth of the pigeon: I. Acta Otolaryngol 37:76–84

    Article  Google Scholar 

  4. Wit HP, Bleeker JD (1981) Vestibular and cochlear responses to acoustic transients. Some properties of whole-nerve action potentials in pigeons. Acta Otolaryngol 92:409–422

    Article  CAS  PubMed  Google Scholar 

  5. Mikaelian D (1964) Vestibular response to sound: single unit recording from the vestibular nerve in fenestrated deaf mice (Df/Df). Acta Otolaryngol 58:409–422

    Article  CAS  PubMed  Google Scholar 

  6. Young ED, Fernandez C, Goldberg JM (1977) Responses of squirrel monkey vestibular neurons to audio-frequency sound and had vibration. Acta Otolaryngol 84:352–360

    Article  CAS  PubMed  Google Scholar 

  7. Cazals Y, Aran JM, Erre JP, Guilhaume A, Aurousseau C (1983) Vestibular acoustic perception in the guinea pig: a saccular function? Acta Otolaryngol 95:211–217

    Article  CAS  PubMed  Google Scholar 

  8. McCue MP, Guinian JJ (1995) Spontaneous activity and frequency selectivity of acoustically responsive vestibular afferents in the cat. J Neurophysiol 47:1563–1572

    Google Scholar 

  9. McCue MP, Guinian JJ (1994) Acoustically responsive fibers in the vestibular nerve of the cat. J Neurosci 14:6058–6070

    CAS  PubMed  Google Scholar 

  10. Bocca E, Perani G (1960) Further contributions to the knowledge of vestibular hearing. Acta Otolaryngol 51:260–267

    Article  CAS  PubMed  Google Scholar 

  11. Sheykholeslami K, kaga K (2002) The otolithic organ as a receptor of vestibular hearing revealed by vestibular-evoked myogenic potentials in patients with inner ear anomalies. Hear Res 165:62–67

    Article  CAS  PubMed  Google Scholar 

  12. Bleeker JS, Wit HP (1984) Cochlear implant versus vestibular stimulation. Ann Otol Rhinol Laryngol 93:192–193

    CAS  PubMed  Google Scholar 

  13. Colebatch JG, Halmagyi GM, Skuse NF (1994) Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry 57:190–197

    Article  CAS  PubMed  Google Scholar 

  14. Jacklar RK, Luxford WM, House WF (1987) Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope 97:2–14

    Article  Google Scholar 

  15. Kaga K, Suzuki J (1981) Influence of labyrinthine hypoactivity on gross motor development of infants. Ann N Y Acad Sci 374:412–420

    Article  CAS  PubMed  Google Scholar 

  16. Anson BJ, Donaldson JA (1992) Surgical anatomy of the temporal bone. Raven, New York

    Google Scholar 

  17. Jin Y, Shinjo Y, Akamatsu Y, Ogata E, Nakamura M, Kianoush S, Yamasoba T, Kaga K (2008) Vestibular evoked myogenic potentials evoked by multichannel cochlear implant-influence of C levels. Acta Otolaryngol 128:284–290

    Article  PubMed  Google Scholar 

  18. Jin Y, Nakamura M, Shinjo Y, Kaga K (2006) Vestibular-evoked myogenic potentials in cochlear implant children. Acta Otolaryngol 126:164–169

    Article  PubMed  Google Scholar 

  19. Buchman CA, Copeland BK, Yu KK, Brown CJ, Carrasco VN, Pillsbury HC III (2004) Cochlear implantation in children with congenital inner malformations. Laryngoscope 114:309–316

    Article  PubMed  Google Scholar 

  20. Manolidis S, Tonini R, Spitzer J (2006) Endoscopically guided placement of prefabricated cochlear implant electrodes in a common cavity malformation. Int J Pediatr Otorhinolaryngol 70:595–596

    Article  Google Scholar 

  21. Papsin BC (2005) Cochlear implantation in children with anomalous cochleovestibular anatomy. Laryngoscope 115:1–26

    Article  PubMed  Google Scholar 

  22. Sennaroglu L, Gursel B, Sennaroglu G, Yucel E, Saatci I (2001) Vestibular stimulation after cochlear implantation in common cavity deformity. Otolaryngol Head Neck Surg 125:408–410

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kaga, K. (2014). Inner Ear Anomalies and Vestibular-Evoked Myogenic Potentials (VEMP). In: Vertigo and Balance Disorders in Children. Modern Otology and Neurotology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54761-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54761-7_6

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54760-0

  • Online ISBN: 978-4-431-54761-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics