Skip to main content

Details of Molecular Bistability Based on Pyrimidine Ring Rotation in Copper(I) Complexes

  • Chapter
  • First Online:
  • 501 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The rational molecular design requires a detailed investigation for the equilibrium between two rotational isomers derived from orientation of pyrimidine ring. I studied on chemistry of rotational equilibrium in newly synthesized copper(I) complexes bearing two bidentate ligands, pyridylpyrimidine and bulky diphosphine, using 1H NMR and single crystal X-ray structural analysis. I found that ion-pairing sensitivities of rotational bistability in the view point of both thermodynamics and kinetics, evidence for intramolecular process of interconversion, and suitability of common organic solution state for the desired function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Reichardt C (2003) Solvents and solvent effects in organic chemistry, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  2. Macchioni A (2005) Chem Rev 105:2039–2073

    Article  CAS  Google Scholar 

  3. Moreno A, Pregosin PS, Veiros LF, Albinati A, Rizzato S (2009) Chem Eur J 15:6848–6862

    Article  CAS  Google Scholar 

  4. Kumar PGA, Pregosin PS, Goicoechea JM, Whittlesey MK (2003) Organometallics 22:2956–2960

    Article  CAS  Google Scholar 

  5. Pregosin PS, Kumar PGA, Fernández I (2005) Chem Rev 105:2977–2998

    Article  CAS  Google Scholar 

  6. Martinez-Viviente E, Pregosin PS (2003) Inorg Chem 42:2209–2214

    Article  CAS  Google Scholar 

  7. Lacour J, Moraleda D (2009) Chem Commun 7073–7089

    Google Scholar 

  8. Hebbe-Viton V, Desvergnes V, Jodry JJ, Dietrich-Buchecker C, Sauvage J-P, Lacour J (2006) Dalton Trans 2058–2065

    Google Scholar 

  9. Desvergnes-Breuil V, Hebbe V, Dietrich-Buchecker C, Sauvage J-P, Lacour J (2003) Inorg Chem 42:255–257

    Article  CAS  Google Scholar 

  10. Hutin M, Nitschke JR (2006) Chem Commun 1724–1726

    Google Scholar 

  11. Merrill CL, Wilson LJ, Thamann TJ, Loehr TM, Ferris NS, Woodruff WH (1984) J Chem Soc Dalton Trans 2207–2221

    Google Scholar 

  12. Liang H-C, Kim E, Incarvito CD, Rheingold AL, Karlin KD (2002) Inorg Chem 41:2209–2212

    Article  CAS  Google Scholar 

  13. Letko CS, Rauchfuss TB, Zhou X, Gray DL (2012) Inorg Chem 51:4511–4520

    Article  CAS  Google Scholar 

  14. Lee Y, Lee D-H, Park GY, Lucas HR, Narducci Sarjeant AA, Kieber-Emmons MT, Vance MA, Milligan AE, Solomon EI, Karlin KD (2010) Inorg Chem 49:8873–8885

    Google Scholar 

  15. Medwid JB, Paul R, Baker JS, Brockman JA, Du MT, Hallett WA, Hanifin JW, Hardy RA, Tarrant ME, Torley LW, Wrenn S (1990) J Med Chem 33:1230–1241

    Article  CAS  Google Scholar 

  16. Lafferty JJ, Case FH (1967) J Org Chem 32:1591–1596

    Article  CAS  Google Scholar 

  17. Kuang SM, Cuttell DG, McMillin DR, Fanwick PE, Walton RA (2002) Inorg Chem 41:3313–3322

    Article  CAS  Google Scholar 

  18. Saito K, Arai T, Takahashi N, Tsukuda T, Tsubomura T (2006) Dalton Trans 4444–4448

    Google Scholar 

  19. Yang L, Feng JK, Ren AM, Zhang M, Ma YG, Liu XD (2005) Eur J Inorg Chem 1867–1879

    Google Scholar 

  20. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) J Appl Cryst 27:435

    Google Scholar 

  21. Sheldrick GM (2008) Acta Cryst A64:112–122

    Article  Google Scholar 

  22. Farrugia LJ (1999) J Appl Cryst 32:837–838

    Article  CAS  Google Scholar 

  23. Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) Organometallics 29:2176–2179

    Article  CAS  Google Scholar 

  24. Atkins P, De Paula J (2006) Physical chemistry, 8th edn. W. H. Freeman, New York

    Google Scholar 

  25. Bain AD (2003) Prog Nucl Magn Reson Spectrosc 43:63–103

    Article  CAS  Google Scholar 

  26. Sandström J (1982) Dynamic NMR spectroscopy. Academic Press, London

    Google Scholar 

  27. Hiraoka S, Okuno E, Tanaka T, Shiro M, Shionoya M (2008) J Am Chem Soc 130:9089–9098

    Article  CAS  Google Scholar 

  28. Hiraoka S, Hisanaga Y, Shiro M, Shionoya M (2010) Angew Chem Int Ed 49:1669–1673

    Article  CAS  Google Scholar 

  29. Kilbas B, Mirtschin S, Scopellitia R, Severin K (2012) Chem Sci 3:701–704

    Article  CAS  Google Scholar 

  30. Leigh DA, Morales MAF, Pérez EM, Wong JKY, Saiz CG, Slawin AMZ, Carmichael AJ, Haddleton DM, Brouwer AM, Buma WJ, Wurpel GWH, León S, Zerbetto F (2005) Angew Chem Int Ed 44:3062–3067

    Article  CAS  Google Scholar 

  31. Gong C, Gibson HW (1997) Angew Chem Int Ed Engl 36:2331–2333

    Article  CAS  Google Scholar 

  32. Wilmes GM, France MB, Lynch SR, Waymouth RM (2004) Organometallics 23:2405–2411

    Article  CAS  Google Scholar 

  33. Tafazzoli M, Ziyaei-Halimjani A, Ghiasi M, Fattahi M, Saidi MR (2008) J Mol Struct 886:24–31

    Article  CAS  Google Scholar 

  34. Gennari M, Lanfranchi M, Cammi R, Pellinghelli MA, Marchiò L (2007) Inorg Chem 46:10143–10152

    Article  CAS  Google Scholar 

  35. Nakafuji S, Kobayashi J, Kawashima T, Schmidt MW (2005) Inorg Chem 44:6500–6502

    Article  CAS  Google Scholar 

  36. Blom R, Swang O (2002) Eur J Inorg Chem 411–415

    Google Scholar 

  37. Nomoto K, Kume S, Nishihara H (2009) J Am Chem Soc 131:3830–3831

    Article  CAS  Google Scholar 

  38. Kume S, Nomoto K, Kusamoto T, Nishihara H (2009) J Am Chem Soc 131:14198–14199

    Article  CAS  Google Scholar 

  39. Kume S, Nishihara H (2011) Chem Commun 47:415–417

    Article  CAS  Google Scholar 

  40. Kume S, Nishihara H (2011) Dalton Trans 40:2299–2305

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihiro Nishikawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Nishikawa, M. (2014). Details of Molecular Bistability Based on Pyrimidine Ring Rotation in Copper(I) Complexes. In: Photofunctionalization of Molecular Switch Based on Pyrimidine Ring Rotation in Copper Complexes. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54625-2_2

Download citation

Publish with us

Policies and ethics