Skip to main content

R-parity Violation and Phenomenological Constraints

  • Chapter
  • First Online:
  • 528 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

We have seen in the previous chapter that the general renormalizable supersymmetric extension of the standard model allows also baryon and lepton number violating interactions. These interactions, called the R-parity violating interactions, can be avoided by imposing the conservation of R-parity. This assumption is however ad hoc and must be investigated phenomenologically. In this chapter, we will first review the R-parity violating interactions and their properties. We will then present briefly the bilinear R-parity violation, and finally list the phenomenological constraints on the trilinear R-parity violation given by particle physics experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L.J. Hall, M. Suzuki, Nucl. Phys. B 231, 419 (1984)

    Article  ADS  Google Scholar 

  2. D. Brahm, L. Hall, Phys. Rev. D 40, 2449 (1989)

    Article  ADS  Google Scholar 

  3. K. Tamvakis, Phys. Lett. B 382, 251 (1996)

    Article  ADS  Google Scholar 

  4. R. Hempfling, Nucl. Phys. B 478, 3 (1996)

    Article  ADS  Google Scholar 

  5. G.F. Giudice, R. Rattazzi, Phys. Lett. B 406, 321 (1997)

    Article  ADS  Google Scholar 

  6. B.C. Allanach, A. Dedes, H.K. Dreiner, Phys. Rev. D 60, 075014 (1999)

    Article  ADS  Google Scholar 

  7. M.C. Bento, L. Hall, G.G. Ross, Nucl. Phys. B 292, 400 (1987)

    Article  ADS  Google Scholar 

  8. N. Ganoulis, G. Lazarides, Q. Shafi, Nucl. Phys. B 323, 374 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  9. A. Masiero, J.W.F. Valle, Phys. Lett. B 251, 273 (1990)

    Article  ADS  Google Scholar 

  10. A. Yu, Smirnov and F. Vissani. Phys. Lett. B 380, 317 (1996)

    Article  Google Scholar 

  11. G. Bhattacharyya, P.B. Pal, Phys. Lett. B 439, 81 (1998)

    Article  ADS  Google Scholar 

  12. G. Bhattacharyya, P.B. Pal, Phys. Rev. D 59 (1999)

    Google Scholar 

  13. G. Bhattacharyya, arXiv:hep-ph/9709395

    Google Scholar 

  14. H.K. Dreiner, arXiv:hep-ph/9707435

    Google Scholar 

  15. R. Barbier et al., Phys. Rept. 420, 1 (2005)

    Article  ADS  Google Scholar 

  16. M. Chemtob, Prog. Part. Nucl. Phys. 54, 71 (2005)

    Article  ADS  Google Scholar 

  17. K.S. Babu, R.N. Mohapatra, Phys. Rev. Lett. 75, 2276 (1995)

    Article  ADS  Google Scholar 

  18. M. Hirsch, H.V. Klapdor-Kleingrothaus, S.G. Kovalenko, Phys. Rev. Lett. 75, 17 (1995)

    Article  ADS  Google Scholar 

  19. A. Faessler, S. Kovalenko, F. Simkovic, J. Schwieger, Phys. Rev. Lett. 78, 183 (1997)

    Article  ADS  Google Scholar 

  20. M. Hirsch, H.V. Klapdor-Kleingrothaus, S.G. Kovalenko, Phys. Rev. D 57, 1947 (1998)

    Article  ADS  Google Scholar 

  21. A. Faessler, T. Gutsche, S. Kovalenko, F. Simkovic, Phys. Rev. D 77, 113012 (2008)

    Article  ADS  Google Scholar 

  22. S. Dawson, Nucl. Phys. B 261, 297 (1985)

    Article  ADS  Google Scholar 

  23. S. Dimopoulos, L.J. Hall, Phys. Lett. B 207, 210 (1988)

    Article  ADS  Google Scholar 

  24. R.M. Godbole, P. Roy, X. Tata, Nucl. Phys. B 401, 67 (1993)

    Article  ADS  Google Scholar 

  25. M. Chaichian, H. Huitu, Phys. Lett. B 384, 157 (1996)

    Article  ADS  Google Scholar 

  26. H.K. Dreiner, M. Krämer, B. O’Leary, Phys. Rev. D 75, 114016 (2007)

    Article  ADS  Google Scholar 

  27. Y. Kao, T. Takeuchi, arXiv:0909.0042 [hep-ph]

    Google Scholar 

  28. K. Agashe, M. Graesser, Phys. Rev. D 54, 4445 (1996)

    Article  ADS  Google Scholar 

  29. D. Choudhury, P. Roy, Phys. Lett. B 378, 153 (1996)

    Article  ADS  Google Scholar 

  30. N.G. Deshpande, D.K. Ghosh, X.-G. He, Phys. Rev. D 70, 093003 (2004)

    Article  ADS  Google Scholar 

  31. A. Deandrea, J. Welzel, M. Oertel, JHEP 0410, 38 (2004)

    Article  ADS  Google Scholar 

  32. A.V. Artamonov et al., BNL-E949 collaboration. Phys. Rev. D 79, 092004 (2009)

    Article  ADS  Google Scholar 

  33. S. Adler et al., Phys. Rev. D 77, 052003 (2008)

    Article  ADS  Google Scholar 

  34. S. Adler et al., Phys. Rev. D 70, 037102 (2004)

    Article  ADS  Google Scholar 

  35. S. Adler et al., Phys. Lett. B 537, 211 (2002)

    Article  ADS  Google Scholar 

  36. J. Brod, M. Gorbahn, E. Stamou, Phys. Rev. D 83, 034030 (2011)

    Article  ADS  Google Scholar 

  37. Y. Grossman, Z. Ligeti, E. Nardi, Nucl. Phys. B 465, 369 (1996); [Erratum] Nucl. Phys. B 480, 753 (1996)

    Google Scholar 

  38. G. Buchalla, A.J. Buras, Nucl. Phys. B 400, 225 (1993)

    Article  ADS  Google Scholar 

  39. K. Nakamura et al., Particle data group. J. of Phys. G 37, 075021 (2010) and 2011 partial update for the 2012 edition (URL: http://pdg.lbl.gov)

  40. J. Beringer et al., Particle data group. Phys. Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  41. V. Barger, G.F. Giudice, T. Han, Phys. Rev. D 40, 2987 (1989)

    Article  ADS  Google Scholar 

  42. Y. Kao, T. Takeuchi, arXiv:0910.4980 [hep-ph]

    Google Scholar 

  43. J.R. Ellis, G. Gelmini, C. Jarlskog, G.G. Ross, J.W.F. Valle, Phys. Lett. B 150, 142 (1985)

    Article  ADS  Google Scholar 

  44. H.K. Dreiner, G.G. Ross, Nucl. Phys. B 365, 597 (1991); ATLAS Collaboration (presented by P. D. Jackson), arXiv:1112.0369 [hep-ex]

    Google Scholar 

  45. J.E. Kim, B. Kyae, J.D. Park, arXiv:hep-ph/9810503

    Google Scholar 

  46. A. Bouquet, P. Salati, Nucl. Phys. B 284, 557 (1987)

    Article  ADS  Google Scholar 

  47. W. Fischler, G. Giudice, R.S. Leigh, S. Paban, Phys. Lett. B 258, 45 (1991)

    Article  ADS  Google Scholar 

  48. B.S. Campbell, S. Davidson, J. Ellis, K. Olive, Phys. Lett. B 256, 457 (1991)

    Article  ADS  Google Scholar 

  49. H.K. Dreiner, G.G. Ross, Nucl. Phys. B 410, 188 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yamanaka .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Yamanaka, N. (2014). R-parity Violation and Phenomenological Constraints. In: Analysis of the Electric Dipole Moment in the R-parity Violating Supersymmetric Standard Model. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54544-6_4

Download citation

Publish with us

Policies and ethics