Skip to main content

Branching Systems of Fractal Vascular Trees

  • Chapter
  • First Online:
Microcirculation in Fractal Branching Networks
  • 923 Accesses

Abstract

The branching systems in our body (vascular and bronchial trees) and those in the natural world (plants, trees, and rivers) are characterized by a fractal nature: self-similar branching patterns and recursive bifurcations. These branching networks have the increasing density of branches toward the terminals with decreases in branch radius to the –Dth power: D is termed the fractal dimension. We have devised the primary expression \( {N_{\mathrm{ b}}}(r)={{\left( {{r \left/ {{{r_{\mathrm{ o}}}}} \right.}} \right)}^{{-D-\alpha }}} \) that provides the number of branches in a group with a radius r in a tree, where r o is the radius of the stem and α is the exponent in the branch length–radius relation. In the branching network, the mean blood flow rate and velocity in a given vessel with radius r can be expressed as \( {F_{\mathrm{ b}}}(r)={F_{\mathrm{ b}\mathrm{ o}}}{{\left( {{r \left/ {{{r_{\mathrm{ o}}}}} \right.}} \right)}^{{D+\alpha }}} \) and \( {U_{\mathrm{ b}}}(r)={U_{\mathrm{ b}\mathrm{ o}}}{{\left( {{r \left/ {{{r_{\mathrm{ o}}}}} \right.}} \right)}^{{D+\alpha -2}}} \), where F bo is the total flow through the stem vessel of the network. Analogously, various hydrodynamic parameters, such as wall shear rate, shear stress, and intravascular pressure, are written as a function of vessel radius in a given position within the branching network. The validity of these expressions was verified by the comparison between the outcomes from the simulation and in vivo measurements from various vascular beds. For the power law, the so-called Murray’s law, it is clarified that the bifurcation exponent is equal to the sum of the fractal dimension and the branch length exponent. For allometric studies of the vascular system in mammalians, the distribution of the arteriolar ends of the capillaries in any organ is uniform independently of animal size, and then the difference in body size of mammals is attributable to the number of the basic units of the capillary and the surrounding tissue. Finally, an infarction index, the ratio of the number of the terminal branches downstream from an obstructed artery to that of the total terminal branches of a vascular tree, is also used to quantify the degree to which an organ has ischemic damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlborn BK (2004) Zoological physics. Springer, Berlin

    Google Scholar 

  • Ando J, Yamamoto K (2009) Vascular mechanobiology: endothelial cell responses to fluid shear stress. Circ J 73:1983–1992

    Article  PubMed  CAS  Google Scholar 

  • Attinger EO (1964) Pulsatile blood flow. McGraw-Hill, New York

    Google Scholar 

  • Baba K, Kawamura T, Shibata M, Sohirad M, Kamiya A (1995) Capillary-tissue arrangement in the skeletal muscle optimized for oxygen transport in all mammals. Microvasc Res 49:163–179

    Article  PubMed  CAS  Google Scholar 

  • Bassingthwaite JB, Liebovitch LS, West BJ (1994) Fractal physiology. Oxford University Press, Oxford

    Book  Google Scholar 

  • Caro CG, Pedley TJ, Schroter RC, Seed WA (1978) The mechanics of the circulation. Oxford University Press, New York

    Google Scholar 

  • Dawson CA, Krenz GS, Karau KL, Haworth ST, Hanger CC, Linehan JH (1999) Structure-function relationships in the pulmonary arterial tree. J Appl Physiol 86:569–583

    PubMed  CAS  Google Scholar 

  • Fåhraeus R, Lindqvist T (1931) The viscosity of the blood in narrow capillary tubes. Am J Physiol 96:562–568

    Google Scholar 

  • Family F, Masters BR, Platt DE (1989) Fractal pattern formation in human retinal vessels. Physica D 38:98–103

    Article  Google Scholar 

  • Folkow B, Neil E (1971) Circulation. Oxford University Press, Oxford

    Google Scholar 

  • Fung YC (1996) Biomechanics: circulation. Springer, New York

    Google Scholar 

  • Gehr P, Mwangi DK, Ammann A, Maloiy GMO, Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to body mass: wild and domestic mammals. Resp Physiol 44:61–86

    Article  CAS  Google Scholar 

  • Haynes RH (1960) Physical basis of the dependence of blood viscosity on tube radius. Am J Physiol 198:1193–1200

    PubMed  CAS  Google Scholar 

  • Holt JP, Rhode EA, Holt WW, Kines H (1981) Geometric similarity of aorta, venae cavae, and certain of their branches in mammals. Am J Physiol 241:R100–R104

    PubMed  CAS  Google Scholar 

  • Horsfield K, Thurlbeck A (1981) Relation between diameter and flow in branches of the bronchial tree. Bull Math Biol 43:681–691

    PubMed  CAS  Google Scholar 

  • Kamiya A, Takahashi T (2007) Quantitative assessments of morphological and functional properties of biological trees based on their fractal nature. J Appl Physiol 102:2315–2323

    Article  PubMed  Google Scholar 

  • Kamiya A, Togawa T (1972) Optimal branching structure of the vascular tree. Bull Math Biol 34:431–438

    CAS  Google Scholar 

  • Kamiya A, Togawa T (1980) Adaptive regulation of wall shear stress to flow change in the canine artery. Am J Physiol 239:H14–H21

    PubMed  CAS  Google Scholar 

  • Kamiya A, Bukhari R, Togawa T (1984) Adaptive regulation of wall shear stress optimizing vascular tree function. Bull Math Biol 46:127–137

    PubMed  CAS  Google Scholar 

  • Kamiya A, Wakayama H, Baba K (1993) Optimality analysis of vascular-tissue system in mammals for oxygen transport. J Theor Biol 162:229–242

    Article  PubMed  CAS  Google Scholar 

  • Karau K, Krenz GS, Dawson CA (2001) Branching exponent heterogeneity and wall shear stress distribution in vascular trees. Am J Physiol 280:H1256–H1263

    CAS  Google Scholar 

  • Kassab GS (2006) Scaling laws of vascular trees: of form and function. Am J Physiol 290:H894–H903

    CAS  Google Scholar 

  • Kassab GS, Fung YC (1995) The pattern of coronary arteriolar bifurcations and the uniform shear hypothesis. Ann Biomed Eng 23:13–20

    Article  PubMed  CAS  Google Scholar 

  • Kitaoka H, Itoh H (1991) Spatial distribution of the peripheral airways. Application of fractal geometry. Forma 6:181–191

    Google Scholar 

  • Kitaoka H, Suki B (1997) Branching design of the bronchial tree based on a diameter-flow relationship. J Appl Physiol 82:968–976

    PubMed  CAS  Google Scholar 

  • Kurz H, Sandau K (1997) Modeling of blood vessel development—bifurcation pattern and hemodynamics, optimality and allometry. Comments Theor Biol 4:261–291

    Google Scholar 

  • Majumdar A, Alencar AM, Buldyrev SV, Hantos Z, Lutchen KR, Stanley HE, Suki B (2005) Relating airway diameter distributions to regular branching asymmetry in the lung. Phys Rev Lett 95:16810_1–16810_14

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New York

    Google Scholar 

  • Masters BR (1994) Fractal analysis of normal human retinal blood vessels. Fractals 2:103–110

    Article  Google Scholar 

  • Matsumoto T, Hayashi K (1994) Mechanical and dimensional adaptation of rat aorta to hypertension. J Biomech Eng 116:278–283

    Article  PubMed  CAS  Google Scholar 

  • Matsuo T, Okeda R, Takahashi M, Funata M (1990) Characterization of bifurcating structures of blood vessels using fractal dimensions. Forma 5:19–27

    Google Scholar 

  • Matsuo T, Nakakubo M, Yamamoto K (1997) Scale invariance of spatial distributions of tree branches, leaves, and petals. Forma 12:91–98

    Google Scholar 

  • Morse DR, Lowton JH, Dodson MM, Williamson MH (1985) Fractal dimension of vegetation and the distribution of arthropod body length. Nature 314:731–733

    Article  Google Scholar 

  • Murray CD (1926) The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Proc Natl Acad Sci USA 12:207–214

    Article  PubMed  CAS  Google Scholar 

  • Murray CD (1927) A relationship between circumference and weight in trees and its bearing on branching angles. J Gen Physiol 10:725–729

    Article  PubMed  CAS  Google Scholar 

  • Nelson TR, Manchester DK (1988) Modeling of lung morphogenesis using fractal geometries. IEEE Trans Med Image 7:321–327

    Article  CAS  Google Scholar 

  • Niklas KJ (1992) Plant biomechanics. The University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (1994) Plant allometry: the scaling of form and process. The University of Chicago Press, Chicago

    Google Scholar 

  • Parker TS, Chua LO (1989) Practical numerical algorithms for chaotic systems. Springer, New York

    Book  Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1995) Design principles of vascular beds. Circ Res 77:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Rosen R (1967) Optimality principles of biology. Butterworths, London

    Google Scholar 

  • Rothe CF (1983) Venous system: physiology of the capacitance vessels. In: Shepherd JT, Abboud FM (eds) Handbook of physiology. Peripheral circulation and organ blood flow, part 1. American Physiological Society, Bethesda, sect 2, vol 3, chap 13, pp 397‒452

    Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: why is animal size so important? Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Schmidt-Nielsen K (1997) Animal physiology, 5th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Shibusawa S, Fujiura T, Iwao T, Takeyama K (1993) Hierarchical modeling of branching growth patterns in a root system of corn (in Japanese). J Jpn Soc Agric Mach 55:111–118

    Google Scholar 

  • Suwa N, Takahashi T (1971) Morphological and morphometrical analysis of circulation in hypertension and ischemic kidney. Urban & Schwarzenberg, Munich

    Google Scholar 

  • Taber LV (1998) An optimization principle for vascular radius including the effects of smooth muscle tone. Biophys J 74:109–114

    Article  PubMed  CAS  Google Scholar 

  • Tchebichef MP (1853) L’intégration des différentielles irrationnelles. J Math 18:87–111

    Google Scholar 

  • Weibel ER (1963) Morphometry of the human lung. Academic, New York

    Google Scholar 

  • West BJ, Bhargava V, Goldberger AL (1986) Beyond the principle of similitude: renormalization in the bronchial tree. J Appl Physiol 60:1089–1097

    PubMed  CAS  Google Scholar 

  • Zamir M (1976) The role of shear forces in arterial branching. J Gen Physiol 67:213–222

    Article  PubMed  CAS  Google Scholar 

  • Zamir M (2000) The physics of pulsatile flow. Springer, New York

    Book  Google Scholar 

  • Zweifach BW, Lipowsky HH (1984) Pressure-flow relations in blood and lymph microcirculation. In: Renkin EM, Michel CC (eds) Handbook of physiology, microcirculation, part 1. The cardiovascular system. American Physiological Society, Bethesda, sect 2, vol 4, chap 7, pp 251‒307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Takahashi, T. (2014). Branching Systems of Fractal Vascular Trees. In: Microcirculation in Fractal Branching Networks. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54508-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54508-8_1

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54507-1

  • Online ISBN: 978-4-431-54508-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics