Skip to main content

Morphological Changes in Anterior Horn Cells, Immunoreactivity to Neurotrophic Factors, and Neuronal Cell Death of Spinal Cord Lesions in the Spinal Hyperostotic Mouse (twy/twy) with Chronic Mechanical Cord Compression

  • Chapter
  • First Online:
Neuroprotection and Regeneration of the Spinal Cord

Abstract

We examined the morphology of spinal accessory motoneurons, immunoreactivity to brain-derived neurotrophic factor (BDNF) and neurotrophin (NT)-3, and reactive astrocytosis in 70 tiptoe-walking Yoshimura (twy/twy) mice that develop calcification at C1–C2 vertebral level compressing the spinal cord. At the level of compression, the area of neuronal soma, total length of dendrites, and numbers of wheat germ agglutinin-horseradish peroxidase (WGA-HRP)-labeled accessory motoneurons decreased significantly. Rostral to the compressive lesion, opposite findings were evidenced; enhanced BDNF and NT-3 immunoreactivities were evident in the anterior horn cells, increasing in response to a more severe degree of compression, with larger population of BDNF-positive astrocyte-like cells.

Our results suggest increased functional activity of anterior horn cells at levels rostral to the site of compression. We speculate that the presence of BDNF and NT-3 in neurons and astrocyte-like cells is proportionate to the severity of chronic mechanical compression and may contribute to the heterotropic neuronal reserve and survival. The numbers of TUNEL-positive neurons in the gray matter and oligodendrocytes in the white matter of the spinal cord of the twy/twy mouse increased with progressive mechanical compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baba H, Uchida K, Maezawa Y et al (1996) Lordotic alignment and posterior migration of the spinal cord following en bloc open-door laminoplasty for cervical myelopathy: a magnetic resonance imaging study. J Neurol 243:626–632

    Article  CAS  PubMed  Google Scholar 

  2. Baba H, Maezawa Y, Uchida K et al (1997) Plasticity of the spinal cord contributes to neurological improvement after treatment by cervical decompression. A magnetic resonance imaging study. J Neurol 244:455–460

    Article  CAS  PubMed  Google Scholar 

  3. Mizuno J, Nakagawa H, Iwata K et al (1992) Pathology of spinal cord lesions caused by ossification of the posterior longitudinal ligament, with special reference to reversibility of the spinal cord lesion. Neurol Res 14:312–314

    CAS  PubMed  Google Scholar 

  4. al-Mefty O, Harkey HL, Marawi I et al (1993) Experimental chronic compressive cervical myelopathy. J Neurosurg 79:550–561

    Article  CAS  PubMed  Google Scholar 

  5. Martin D, Schoenen J, Delree P et al (1992) Experimental acute traumatic injury of the adult rat spinal cord by a subdural inflatable balloon: methodology, behavioral analysis, and histopathology. J Neurosci Res 32:539–550

    Article  CAS  PubMed  Google Scholar 

  6. Baba H, Maezawa Y, Imura S et al (1996) Quantitative analysis of the spinal cord motoneuron under chronic compression: an experimental observation in the mouse. J Neurol 243:109–116

    Article  CAS  PubMed  Google Scholar 

  7. Uchida K, Baba H, Maezawa Y et al (1998) Histological investigation of spinal cord lesions in the spinal hyperostotic mouse (twy/twy): morphological changes in anterior horn cells and immunoreactivity to neurotropic factors. J Neurol 245:781–93

    Article  CAS  PubMed  Google Scholar 

  8. Inukai T, Uchida K, Nakajima H et al (2009) Tumor necrosis factor-alpha and its receptors contribute to apoptosis of oligodendrocytes in the spinal cord of spinal hyperostotic mouse (twy/twy) sustaining chronic mechanical compression. Spine 34:2848–57

    Article  PubMed  Google Scholar 

  9. Henderson CE, Camu W, Mettling C et al (1993) Neurotrophins promote motor neuron survival and are present in embryonic limb bud. Nature 363:266–270

    Article  CAS  PubMed  Google Scholar 

  10. Sendtner M, Holtmann B, Kolbeck R et al (1992) Brain-derived neurotrophic factor prevents the death of motoneurons in newborn rats after nerve section. Nature 360:757–759

    Article  CAS  PubMed  Google Scholar 

  11. Yan Q, Elliott JL, Matheson C et al (1993) Influences of neurotrophins on mammalian motoneurons in vivo. J Neurobiol 24:1555–1577

    Article  CAS  PubMed  Google Scholar 

  12. Baba H, Maezawa Y, Uchida K et al (1997) Three-dimensional topographic analysis of spinal accessory motoneurons under chronic mechanical compression: an experimental study in the mouse. J Neurol 244:222–229

    Article  CAS  PubMed  Google Scholar 

  13. Koziol JA, Tuckwell HC (1978) Analysis and estimation of synaptic densities and their spatial variation on the motoneuron surface. Brain Res 150:617–624

    Article  CAS  PubMed  Google Scholar 

  14. Purves D, Lichtman JW (1985) Geometrical differences among homologous neurons in mammals. Science 228:298–302

    Article  CAS  PubMed  Google Scholar 

  15. Turner AM, Greenough WT (1985) Differential rearing effects on rat visual cortex synapses. Synaptic and neuronal density and synapses per neuron. Brain Res 329:195–203

    Article  CAS  PubMed  Google Scholar 

  16. Funakoshi H, Frisen J, Barbany G et al (1993) Differential expression of mRNAs for neurotrophins and their receptors after axotomy of the sciatic nerve. J Cell Biol 123:455–465

    Article  CAS  PubMed  Google Scholar 

  17. DiStefano PS, Friedman B, Radziejewski C et al (1992) The neurotrophins BDNF, NT-3, and NGF display distinct patterns of retrograde axonal transport in peripheral and central neurons. Neuron 8:983–993

    Article  CAS  PubMed  Google Scholar 

  18. Maisonpierre PC, Belluscio L, Friedman B et al (1990) NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5:501–509

    Article  CAS  PubMed  Google Scholar 

  19. Zhou XF, Rush RA (1993) Localization of neurotrophin-3-like immunoreactivity in peripheral tissues of the rat. Brain Res 621:189–199

    Article  CAS  PubMed  Google Scholar 

  20. Ernfors P, Persson H (1991) Developmentally regulated expression of HDNF/NT-3 mRNA in rat spinal cord motoneurons and expression of BDNF mRNA in embryonic dorsal root ganglion. Eur J Neurosci 3:953–961

    Article  PubMed  Google Scholar 

  21. Barde YA, Edgar D, Thoenen H (1982) Purification of a new neurotrophic factor from mammalian brain. EMBO J 1:549–553

    CAS  PubMed  Google Scholar 

  22. Lu B, Yokoyama M, Dreyfus CF et al (1991) NGF gene expression in actively growing brain glia. J Neurosci 11:318–326

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

 This work was supported in part by Grants-in-Aid for General Scientific Research of the Ministry of Education, Science and Culture of Japan (grants numbers 09671480, C15591571, B16390435, B18390413, and B19791023). This work was also supported in part by grants from the Investigation Committee on Ossification of the Spinal Ligaments, Public Health Bureau of the Japanese Ministry of Health and Welfare.

Conflict of Interest  All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenzo Uchida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Uchida, K., Nakajima, H., Furukawa, S., Inukai, T., Maezawa, Y., Baba, H. (2014). Morphological Changes in Anterior Horn Cells, Immunoreactivity to Neurotrophic Factors, and Neuronal Cell Death of Spinal Cord Lesions in the Spinal Hyperostotic Mouse (twy/twy) with Chronic Mechanical Cord Compression. In: Uchida, K., Nakamura, M., Ozawa, H., Katoh, S., Toyama, Y. (eds) Neuroprotection and Regeneration of the Spinal Cord. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54502-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54502-6_9

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54501-9

  • Online ISBN: 978-4-431-54502-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics