Skip to main content

Recombinant Human Hepatocyte Growth Factor Promotes Functional Recovery After Spinal Cord Injury

  • Chapter
  • First Online:
  • 1674 Accesses

Abstract

Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We revealed that introducing exogenous HGF into the injured rat spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, this rat study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open-field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. This study demonstrates the therapeutic effects, safety, and clinical efficacy of intrathecal rhHGF treatment for SCI in adult nonhuman primates and the possibility that this novel therapy may be suitable for clinical application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Tuszynski MH, Peterson DA, Ray J, Baird A, Nakahara Y, Gage FH (1994) Fibroblasts genetically modified to produce nerve growth factor induce robust neuritic ingrowth after grafting to the spinal cord. Exp Neurol 126(1):1–14. doi:S0014488684710375 [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Tuszynski MH, Gabriel K, Gage FH, Suhr S, Meyer S, Rosetti A (1996) Nerve growth factor delivery by gene transfer induces differential outgrowth of sensory, motor, and noradrenergic neurites after adult spinal cord injury. Exp Neurol 137(1):157–173. doi:S0014-4886(96)90016-3 [pii] 10.1006/exnr.1996.0016

    Article  CAS  PubMed  Google Scholar 

  3. Jakeman LB, Wei P, Guan Z, Stokes BT (1998) Brain-derived neurotrophic factor stimulates hindlimb stepping and sprouting of cholinergic fibers after spinal cord injury. Exp Neurol 154(1):170–184. doi:S0014-4886(98)96924-2 [pii] 10.1006/exnr.1998.6924

    Article  CAS  PubMed  Google Scholar 

  4. McTigue DM, Horner PJ, Stokes BT, Gage FH (1998) Neurotrophin-3 and brain-derived neurotrophic factor induce oligodendrocyte proliferation and myelination of regenerating axons in the contused adult rat spinal cord. J Neurosci 18(14):5354–5365

    CAS  PubMed  Google Scholar 

  5. Grill R, Murai K, Blesch A, Gage FH, Tuszynski MH (1997) Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J Neurosci 17(14):5560–5572

    CAS  PubMed  Google Scholar 

  6. Blesch A, Tuszynski MH (2001) GDNF gene delivery to injured adult CNS motor neurons promotes axonal growth, expression of the trophic neuropeptide CGRP, and cellular protection. J Comp Neurol 436(4):399–410

    Article  CAS  PubMed  Google Scholar 

  7. Liu LJ, Zhu JK, Xiao JD (1999) Rescue of motoneuron from brachial plexus nerve root avulsion induced cell death by Schwann cell derived neurotrophic factor. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 13(5):295–298

    CAS  PubMed  Google Scholar 

  8. Casella GT, Marcillo A, Bunge MB, Wood PM (2002) New vascular tissue rapidly replaces neural parenchyma and vessels destroyed by a contusion injury to the rat spinal cord. Exp Neurol 173(1):63–76

    Article  PubMed  Google Scholar 

  9. Loy DN, Crawford CH, Darnall JB, Burke DA, Onifer SM, Whittemore SR (2002) Temporal progression of angiogenesis and basal lamina deposition after contusive spinal cord injury in the adult rat. J Comp Neurol 445(4):308–324. doi:10.1002/cne.10168 [pii]

    Article  PubMed  Google Scholar 

  10. Mautes AE, Weinzierl MR, Donovan F, Noble LJ (2000) Vascular events after spinal cord injury: contribution to secondary pathogenesis. Phys Ther 80(7):673–687

    CAS  PubMed  Google Scholar 

  11. Guizar-Sahagun G, Ibarra A, Espitia A, Martinez A, Madrazo I, Franco-Bourland RE (2005) Glutathione monoethyl ester improves functional recovery, enhances neuron survival, and stabilizes spinal cord blood flow after spinal cord injury in rats. Neuroscience 130(3):639–649. doi:S0306-4522(04)00918-2 [pii] 10.1016/j.neuroscience.2004.09.056

    Article  CAS  PubMed  Google Scholar 

  12. Glaser J, Gonzalez R, Perreau VM, Cotman CW, Keirstead HS (2004) Neutralization of the chemokine CXCL10 enhances tissue sparing and angiogenesis following spinal cord injury. J Neurosci Res 77(5):701–708. doi:10.1002/jnr.20204

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura T, Nawa K, Ichihara A (1984) Partial purification and characterization of hepatocyte growth factor from serum of hepatectomized rats. Biochem Biophys Res Commun 122(3):1450–1459. doi:0006-291X(84)91253-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura T, Nishizawa T, Hagiya M, Seki T, Shimonishi M, Sugimura A, Tashiro K, Shimizu S (1989) Molecular cloning and expression of human hepatocyte growth factor. Nature 342(6248):440–443. doi:10.1038/342440a0

    Article  CAS  PubMed  Google Scholar 

  15. Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA (1991) Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251(4995):802–804

    Article  CAS  PubMed  Google Scholar 

  16. Caton A, Hacker A, Naeem A, Livet J, Maina F, Bladt F, Klein R, Birchmeier C, Guthrie S (2000) The branchial arches and HGF are growth-promoting and chemoattractant for cranial motor axons. Development 127(8):1751–1766

    CAS  PubMed  Google Scholar 

  17. Maina F, Klein R (1999) Hepatocyte growth factor, a versatile signal for developing neurons. Nat Neurosci 2(3):213–217. doi:10.1038/6310

    Article  CAS  PubMed  Google Scholar 

  18. Hamanoue M, Takemoto N, Matsumoto K, Nakamura T, Nakajima K, Kohsaka S (1996) Neurotrophic effect of hepatocyte growth factor on central nervous system neurons in vitro. J Neurosci Res 43(5):554–564. doi:10.1002/(SICI)1097-4547(19960301)43:5<554::AID-JNR5>3.0.CO;2-H [pii] 10.1002/(SICI)1097-4547(19960301)43:5&lt;554::AID-JNR5&gt;3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  19. Honda S, Kagoshima M, Wanaka A, Tohyama M, Matsumoto K, Nakamura T (1995) Localization and functional coupling of HGF and c-Met/HGF receptor in rat brain: implication as neurotrophic factor. Brain Res 32(2):197–210

    Article  CAS  Google Scholar 

  20. Funakoshi HNT (2011) Hepatocyte growth factor (HGF): neurotrophic functions and therapeutic implications for neuronal injury/diseases. Curr Trans Sig Ther 6(2):156–167

    Google Scholar 

  21. Date I, Takagi N, Takagi K, Kago T, Matsumoto K, Nakamura T, Takeo S (2004) Hepatocyte growth factor improved learning and memory dysfunction of microsphere-embolized rats. J Neurosci Res 78(3):442–453. doi:10.1002/jnr.20263

    Article  CAS  PubMed  Google Scholar 

  22. Miyazawa T, Matsumoto K, Ohmichi H, Katoh H, Yamashima T, Nakamura T (1998) Protection of hippocampal neurons from ischemia-induced delayed neuronal death by hepatocyte growth factor: a novel neurotrophic factor. J Cereb Blood Flow Metab 18(4):345–348. doi:10.1097/00004647-199804000-00001

    Article  CAS  PubMed  Google Scholar 

  23. Shimamura M, Sato N, Waguri S, Uchiyama Y, Hayashi T, Iida H, Nakamura T, Ogihara T, Kaneda Y, Morishita R (2006) Gene transfer of hepatocyte growth factor gene improves learning and memory in the chronic stage of cerebral infarction. Hypertension 47(4):742–751. doi:01.HYP.0000208598.57687.3e [pii] 10.1161/01.HYP.0000208598.57687.3e

    Article  CAS  PubMed  Google Scholar 

  24. Ishigaki A, Aoki M, Nagai M, Warita H, Kato S, Kato M, Nakamura T, Funakoshi H, Itoyama Y (2007) Intrathecal delivery of hepatocyte growth factor from amyotrophic lateral sclerosis onset suppresses disease progression in rat amyotrophic lateral sclerosis model. J Neuropathol Exp Neurol 66(11):1037–1044

    Article  CAS  PubMed  Google Scholar 

  25. Kitamura K, Iwanami A, Nakamura M, Yamane J, Watanabe K, Suzuki Y, Miyazawa D, Shibata S, Funakoshi H, Miyatake S, Coffin RS, Nakamura T, Toyama Y, Okano H (2007) Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury. J Neurosci Res 85(11):2332–2342. doi:10.1002/jnr.21372

    Article  CAS  PubMed  Google Scholar 

  26. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21

    Article  CAS  PubMed  Google Scholar 

  27. Kaneko S, Iwanami A, Nakamura M, Kishino A, Kikuchi K, Shibata S, Okano HJ, Ikegami T, Moriya A, Konishi O, Nakayama C, Kumagai K, Kimura T, Sato Y, Goshima Y, Taniguchi M, Ito M, He Z, Toyama Y, Okano H (2007) A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med 12(12):1380–1389

    Article  Google Scholar 

  28. Kobayashi NR, Fan DP, Giehl KM, Bedard AM, Wiegand SJ, Tetzlaff W (1997) BDNF and NT-4/5 prevent atrophy of rat rubrospinal neurons after cervical axotomy, stimulate GAP-43 and Talpha1-tubulin mRNA expression, and promote axonal regeneration. J Neurosci 17(24):9583–9595

    CAS  PubMed  Google Scholar 

  29. Ikegami T, Nakamura M, Yamane J, Katoh H, Okada S, Iwanami A, Watanabe K, Ishii K, Kato F, Fujita H, Takahashi T, Okano HJ, Toyama Y, Okano H (2005) Chondroitinase ABC combined with neural stem/progenitor cell transplantation enhances graft cell migration and outgrowth of growth-associated protein-43-positive fibers after rat spinal cord injury. Eur J Neurosci 22(12):3036–3046

    Article  PubMed  Google Scholar 

  30. Ramon-Cueto A, Plant GW, Avila J, Bunge MB (1998) Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J Neurosci 18(10):3803–3815

    CAS  PubMed  Google Scholar 

  31. Kitamura K, Fujiyoshi K, Yamane J, Toyota F, Hikishima K, Nomura T, Funakoshi H, Nakamura T, Aoki M, Toyama Y, Okano H, Nakamura M (2011) Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury. PLoS One 6(11):e27706. doi:10.1371/journal.pone.0027706 PONE-D-11-12341 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Iwanami A, Yamane J, Katoh H, Nakamura M, Momoshima S, Ishii H, Tanioka Y, Tamaoki N, Nomura T, Toyama Y, Okano H (2005) Establishment of graded spinal cord injury model in a nonhuman primate: the common marmoset. J Neurosci Res 80(2):172–181. doi:10.1002/jnr.20435

    Article  CAS  PubMed  Google Scholar 

  33. Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H, Kobayashi S, Yamasaki M, Momoshima S, Ishii H, Ando K, Tanioka Y, Tamaoki N, Nomura T, Toyama Y, Okano H (2005) Transplantation of human neural stem cells for spinal cord injury in primates. J Neurosci Res 80(2):182–190. doi:10.1002/jnr.20436

    Article  CAS  PubMed  Google Scholar 

  34. Yamane J, Nakamura M, Iwanami A, Sakaguchi M, Katoh H, Yamada M, Momoshima S, Miyao S, Ishii K, Tamaoki N, Nomura T, Okano HJ, Kanemura Y, Toyama Y, Okano H (2010) Transplantation of galectin-1-expressing human neural stem cells into the injured spinal cord of adult common marmosets. J Neurosci Res 88(7):1394–1405. doi:10.1002/jnr.22322

    CAS  PubMed  Google Scholar 

  35. Terashima T, Ochiishi T, Yamauchi T (1994) Immunohistochemical detection of calcium/calmodulin-dependent protein kinase II in the spinal cord of the rat and monkey with special reference to the corticospinal tract. J Comp Neurol 340(4):469–479. doi:10.1002/cne.903400403

    Article  CAS  PubMed  Google Scholar 

  36. Fujiyoshi K, Yamada M, Nakamura M, Yamane J, Katoh H, Kitamura K, Kawai K, Okada S, Momoshima S, Toyama Y, Okano H (2007) In vivo tracing of neural tracts in the intact and injured spinal cord of marmosets by diffusion tensor tractography. J Neurosci 27(44):11991–11998. doi:27/44/11991 [pii] 10.1523/JNEUROSCI.3354-07.2007

    Article  CAS  PubMed  Google Scholar 

  37. Courtine G, Bunge MB, Fawcett JW, Grossman RG, Kaas JH, Lemon R, Maier I, Martin J, Nudo RJ, Ramon-Cueto A, Rouiller EM, Schnell L, Wannier T, Schwab ME, Edgerton VR (2007) Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans? Nat Med 13(5):561–566. doi:nm1595 [pii] 10.1038/nm1595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Matsumoto K, Nakamura T (1997) Hepatocyte growth factor (HGF) as a tissue organizer for organogenesis and regeneration. Biochem Biophys Res Commun 239(3):639–644

    Article  CAS  PubMed  Google Scholar 

  39. Noji S, Tashiro K, Koyama E, Nohno T, Ohyama K, Taniguchi S, Nakamura T (1990) Expression of hepatocyte growth factor gene in endothelial and Kupffer cells of damaged rat livers, as revealed by in situ hybridization. Biochem Biophys Res Commun 173(1):42–47

    Article  CAS  PubMed  Google Scholar 

  40. Kono S, Nagaike M, Matsumoto K, Nakamura T (1992) Marked induction of hepatocyte growth factor mRNA in intact kidney and spleen in response to injury of distant organs. Biochem Biophys Res Commun 186(2):991–998

    Article  CAS  PubMed  Google Scholar 

  41. Yanagita K, Matsumoto K, Sekiguchi K, Ishibashi H, Niho Y, Nakamura T (1993) Hepatocyte growth factor may act as a pulmotrophic factor on lung regeneration after acute lung injury. J Biol Chem 268(28):21212–21217

    CAS  PubMed  Google Scholar 

  42. Igawa T, Matsumoto K, Kanda S, Saito Y, Nakamura T (1993) Hepatocyte growth factor may function as a renotropic factor for regeneration in rats with acute renal injury. Am J Physiol 265(1 Pt 2):F61–F69

    CAS  PubMed  Google Scholar 

  43. Nagayama T, Nagayama M, Kohara S, Kamiguchi H, Shibuya M, Katoh Y, Itoh J, Shinohara Y (2004) Post-ischemic delayed expression of hepatocyte growth factor and c-Met in mouse brain following focal cerebral ischemia. Brain Res 999(2):155–166

    Article  CAS  PubMed  Google Scholar 

  44. Phillips CG, Porter R (1977) Corticospinal neurones. Their role in movement. Monogr Physiol Soc 34(v–xii):1–450

    Google Scholar 

  45. Shapovalov AI (1975) Neuronal organization and synaptic mechanisms of supraspinal motor control in vertebrates. Rev Physiol Biochem Pharmacol 72:1–54

    Article  CAS  PubMed  Google Scholar 

  46. Rouiller EM, Moret V, Tanne J, Boussaoud D (1996) Evidence for direct connections between the hand region of the supplementary motor area and cervical motoneurons in the macaque monkey. Eur J Neurosci 8(5):1055–1059

    Article  CAS  PubMed  Google Scholar 

  47. Lemon RN, Kirkwood PA, Maier MA, Nakajima K, Nathan P (2004) Direct and indirect pathways for corticospinal control of upper limb motoneurons in the primate. Prog Brain Res 143:263–279. doi:S0079-6123(03)43026-4 [pii] 10.1016/S0079-6123(03)43026-4

    Article  PubMed  Google Scholar 

  48. Heffner R, Masterton B (1975) Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav Evol 12(3):161–200

    Article  CAS  PubMed  Google Scholar 

  49. Heffner RS, Masterton RB (1983) The role of the corticospinal tract in the evolution of human digital dexterity. Brain Behav Evol 23(3–4):165–183

    Article  CAS  PubMed  Google Scholar 

  50. Palmer E, Ashby P (1992) Evidence that a long latency stretch reflex in humans is transcortical. J Physiol 449:429–440

    CAS  PubMed  Google Scholar 

  51. Bernhard CG, Bohm E, Petersen I (1953) New investigations on the pyramidal system in Macaca mulatta. Experientia 9(3):111–112

    Article  CAS  PubMed  Google Scholar 

  52. Lemon RN (2008) Descending pathways in motor control. Ann Rev Neurosci 31:195–218

    Article  CAS  PubMed  Google Scholar 

  53. Sasaki S, Isa T, Pettersson LG, Alstermark B, Naito K, Yoshimura K, Seki K, Ohki Y (2004) Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation. J Neurophysiol 92(5):3142–3147. doi:10.1152/jn.00342.2004 00342.2004 [pii]

    Article  PubMed  Google Scholar 

  54. Freund P, Schmidlin E, Wannier T, Bloch J, Mir A, Schwab ME, Rouiller EM (2006) Nogo-A-specific antibody treatment enhances sprouting and functional recovery after cervical lesion in adult primates. Nat Med 12(7):790–792. doi:nm1436 [pii] 10.1038/nm1436

    Article  CAS  PubMed  Google Scholar 

  55. Nishimura Y, Onoe H, Morichika Y, Perfiliev S, Tsukada H, Isa T (2007) Time-dependent central compensatory mechanisms of finger dexterity after spinal cord injury. Science 318(5853):1150–1155. doi318/5853/1150 [pii] 10.1126/science.1147243

    Article  CAS  PubMed  Google Scholar 

  56. Nishimura Y, Morichika Y, Isa T (2009) A subcortical oscillatory network contributes to recovery of hand dexterity after spinal cord injury. Brain 132(Pt 3):709–721

    Article  PubMed  Google Scholar 

  57. Mansfield K, Tardif S, Eichler E (2004) White paper for complete sequencing of the common marmoset (Callithrix jacchus) genome. http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/MarmosetSeq.pdf

  58. Gelfan S (1964) Neuronal interdependence. Prog Brain Res 11:238–260

    Article  CAS  PubMed  Google Scholar 

  59. Bortoff GA, Strick PL (1993) Corticospinal terminations in two new-world primates: further evidence that corticomotoneuronal connections provide part of the neural substrate for manual dexterity. J Neurosci 13(12):5105–5118

    CAS  PubMed  Google Scholar 

  60. Ralston DD, Ralston HJ 3rd (1985) The terminations of corticospinal tract axons in the macaque monkey. J Comp Neurol 242(3):325–337. doi:10.1002/cne.902420303

    Article  CAS  PubMed  Google Scholar 

  61. Alstermark B, Isa T, Ohki Y, Saito Y (1999) Disynaptic pyramidal excitation in forelimb motoneurons mediated via C(3)-C(4) propriospinal neurons in the Macaca fuscata. J Neurophysiol 82(6):3580–3585

    CAS  PubMed  Google Scholar 

  62. Isa T, Ohki Y, Seki K, Alstermark B (2006) Properties of propriospinal neurons in the C3-C4 segments mediating disynaptic pyramidal excitation to forelimb motoneurons in the macaque monkey. J Neurophysiol 95(6):3674–3685. doi:00103.2005 [pii] 10.1152/jn.00103.2005

    Article  PubMed  Google Scholar 

  63. Isa T, Ohki Y, Alstermark B, Pettersson LG, Sasaki S (2007) Direct and indirect cortico-motoneuronal pathways and control of hand/arm movements. Physiology (Bethesda) 22:145–152. doi:22/2/145 [pii] 10.1152/physiol.00045.2006

    Article  Google Scholar 

Download references

Acknowledgements

 This work was supported by grants from Grants-in-Aid for Scientific Research from JSPS and the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), the Project for Realization of Regenerative Medicine and Support for the Core Institutes for iPS Cell Research from MEXT, and by a grant-in-aid for the Global COE program from MEXT to Keio University. Research on Measures for Intractable Diseases from the Japanese Ministry of Health Labor and Welfare of Japan, and by “Super Special Consortia” for Supporting the Development of Cutting-edge Medical Care. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Conflict of Interest  Dr. Toshikazu Nakamura had reported that he was employed by Osaka University as a professor of Kringle Pharma Joint Research Division for Regenerative Drug Discovery in Osaka University, which is sponsored by Kringle Pharma, Inc. (KP), Osaka, Japan. rhHGF protein used in this study was kindly provided by KP. Dr. Funakoshi has served as a scientific advisor of KP. The other authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Kitamura, K. et al. (2014). Recombinant Human Hepatocyte Growth Factor Promotes Functional Recovery After Spinal Cord Injury. In: Uchida, K., Nakamura, M., Ozawa, H., Katoh, S., Toyama, Y. (eds) Neuroprotection and Regeneration of the Spinal Cord. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54502-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54502-6_14

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54501-9

  • Online ISBN: 978-4-431-54502-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics