Skip to main content

In Vivo Tracing of Neural Tracts in Tiptoe-Walking Yoshimura Mice by Diffusion Tensor Tractography

  • Chapter
  • First Online:
Neuroprotection and Regeneration of the Spinal Cord

Abstract

In ossification of the posterior longitudinal ligaments (OPLL), axonal disruption results in motor and sensory function impairment. Twy (tiptoe-walking Yoshimura) mice develop spontaneous calcification in the cervical ligaments, thereby causing chronic compression of the spinal cords. To determine whether in vivo diffusion tensor tractography (DTT) can evaluate the axonal disruption of the chronic compressive spinal cords in twy mice, 6-, 15-, and 20-week-old twy mice were chronologically subjected to DTT. MRI was performed using a 7.0-Tesla magnet with a surface coil (CryoProbe). Diffusion tensor images were analyzed using TrackVis (Massachusetts General Hospital, MA, USA). We succeeded in depicting in vivo high-resolution DTT of the twy mice. The progress of the ligamentous calcification was observed at C2–3 level in each twy mouse, and the number of RT-97 or SMI31 positive fibers was decreased depending on the severity of the compression of the spinal cord. Quantitative analysis of sequential DTT enabled to detect subtle damage of the compressed spinal cord prior to the deterioration of neurological function in twy mice. Thus, in a clinical setting, DTT could be a new effective imaging modality in patients with cervical OPLL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vedantam A, Jonathan A, Rajshekhar V (2011) Association of magnetic resonance imaging signal changes and outcome prediction after surgery for cervical spondylotic myelopathy. J Neurosurg Spine 15(6):660–666. doi:10.3171/2011.8.SPINE11452

    Article  PubMed  Google Scholar 

  2. Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34(1):51–61. doi:10.1007/s12031-007-0029-0

    Article  CAS  PubMed  Google Scholar 

  3. Chang Y, Jung TD, Yoo DS, Hyun JK (2010) Diffusion tensor imaging and fiber tractography of patients with cervical spinal cord injury. J Neurotrauma 27(11):2033–2040. doi:10.1089/neu.2009.1265

    Article  PubMed  Google Scholar 

  4. Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5):527–539. doi:10.1016/j.neuron.2006.08.012

    Article  CAS  PubMed  Google Scholar 

  5. Demir A, Ries M, Moonen CT, Vital JM, Dehais J, Arne P, Caille JM, Dousset V (2003) Diffusion-weighted MR imaging with apparent diffusion coefficient and apparent diffusion tensor maps in cervical spondylotic myelopathy. Radiology 229(1):37–43. doi:10.1148/radiol.2291020658

    Article  PubMed  Google Scholar 

  6. Facon D, Ozanne A, Fillard P, Lepeintre JF, Tournoux-Facon C, Ducreux D (2005) MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol 26(6):1587–1594

    PubMed  Google Scholar 

  7. Okawa A, Nakamura I, Goto S, Moriya H, Nakamura Y, Ikegawa S (1998) Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet 19(3):271–273. doi:10.1038/956

    Article  CAS  PubMed  Google Scholar 

  8. Uchida K, Baba H, Maezawa Y, Kubota C (2002) Progressive changes in neurofilament proteins and growth-associated protein-43 immunoreactivities at the site of cervical spinal cord compression in spinal hyperostotic mice. Spine 27(5):480–486

    Article  PubMed  Google Scholar 

  9. Baltes C, Radzwill N, Bosshard S, Marek D, Rudin M (2009) Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed 22(8):834–842. doi:10.1002/nbm.1396

    Article  PubMed  Google Scholar 

  10. Kouda K, Iki M, Fujita Y, Tamaki J, Yura A, Kadowaki E, Sato Y, Moon JS, Morikawa M, Tomioka K, Okamoto N, Kurumatani N (2011) Alcohol intake and bone status in elderly Japanese men: baseline data from the Fujiwara-kyo osteoporosis risk in men (FORMEN) study. Bone 49(2):275–280. doi:10.1016/j.bone.2011.04.010

    Article  CAS  PubMed  Google Scholar 

  11. Baba H, Imura S, Kawahara N, Nagata S, Tomita K (1995) Osteoplastic laminoplasty for cervical myeloradiculopathy secondary to ossification of the posterior longitudinal ligament. Int Orthop 19(1):40–45

    Article  CAS  PubMed  Google Scholar 

  12. Iwasaki M, Okuda S, Miyauchi A, Sakaura H, Mukai Y, Yonenobu K, Yoshikawa H (2007) Surgical strategy for cervical myelopathy due to ossification of the posterior longitudinal ligament, Part 1: clinical results and limitations of laminoplasty. Spine 32(6):647–653. doi:10.1097/01.brs.0000257560.91147.86

    Article  PubMed  Google Scholar 

  13. Sakai K, Okawa A, Takahashi M, Arai Y, Kawabata S, Enomoto M, Kato T, Hirai T, Shinomiya K (2011) Five-year follow-up evaluation of surgical treatment for cervical myelopathy caused by ossification of the posterior longitudinal ligament: a prospective comparative study of anterior decompression and fusion with floating method versus laminoplasty. Spine. doi:10.1097/BRS.0b013e31821f4a51

    Google Scholar 

  14. Tani T, Ushida T, Ishida K, Iai H, Noguchi T, Yamamoto H (2002) Relative safety of anterior microsurgical decompression versus laminoplasty for cervical myelopathy with a massive ossified posterior longitudinal ligament. Spine 27(22):2491–2498. doi:10.1097/01.BRS.0000031270.69596.4E

    Article  PubMed  Google Scholar 

  15. Fujiyoshi K, Yamada M, Nakamura M, Yamane J, Katoh H, Kitamura K, Kawai K, Okada S, Momoshima S, Toyama Y, Okano H (2007) In vivo tracing of neural tracts in the intact and injured spinal cord of marmosets by diffusion tensor tractography. J Neurosci 27(44):11991–11998. doi:10.1523/JNEUROSCI.3354-07.2007

    Article  CAS  PubMed  Google Scholar 

  16. Takagi T, Nakamura M, Yamada M, Hikishima K, Momoshima S, Fujiyoshi K, Shibata S, Okano HJ, Toyama Y, Okano H (2009) Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography. Neuroimage 44(3):884–892. doi:10.1016/j.neuroimage.2008.09.022

    Article  PubMed  Google Scholar 

  17. Konomi T, Fujiyoshi K, Hikishima K, Komaki Y, Tsuji O, Okano HJ, Toyama Y, Okano H, Nakamura M (2012) Conditions for quantitative evaluation of injured spinal cord by in vivo diffusion tensor imaging and tractography: preclinical longitudinal study in common marmosets. Neuroimage 63(4):1841–1853. doi:10.1016/j.neuroimage.2012.08.040

    Article  PubMed  Google Scholar 

  18. Kara B, Celik A, Karadereler S, Ulusoy L, Ganiyusufoglu K, Onat L, Mutlu A, Ornek I, Sirvanci M, Hamzaoglu A (2011) The role of DTI in early detection of cervical spondylotic myelopathy: a preliminary study with 3-T MRI. Neuroradiology 53(8):609–616. doi:10.1007/s00234-011-0844-4

    Article  PubMed  Google Scholar 

  19. Baba H, Maezawa Y, Imura S, Kawahara N, Nakahashi K, Tomita K (1996) Quantitative analysis of the spinal cord motor neuron under chronic compression: an experimental observation in the mouse. J Neurol 243(2):109–116

    Article  CAS  PubMed  Google Scholar 

  20. Yato Y, Fujimura Y, Nakamura M, Watanabe M, Yabe Y (1997) Decreased choline acetyltransferase activity in the murine spinal cord motor neurons under chronic mechanical compression. Spinal Cord 35(11):729–734

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

 Ministry of Health, Labor and Welfare Sciences Research Grant funds were received to support this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaya Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Takano, M. et al. (2014). In Vivo Tracing of Neural Tracts in Tiptoe-Walking Yoshimura Mice by Diffusion Tensor Tractography. In: Uchida, K., Nakamura, M., Ozawa, H., Katoh, S., Toyama, Y. (eds) Neuroprotection and Regeneration of the Spinal Cord. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54502-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54502-6_10

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54501-9

  • Online ISBN: 978-4-431-54502-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics