Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 697 Accesses

Abstract

One striking point of the Mott insulator is that drastic electronic state change emerges associated with the insulator-metal (Mott) transition. In the vicinity of the Mott transition, a wide variety of phenomena such as high-temperature superconductivity, colossal magnetoresistance, and large thermoelectric effect arises from interplay among charge, spin, and orbital degrees of freedom. While their functional effects should form the significant basis of future oxide electronics, the detailed mechanisms are still under debate. In this thesis, we focus on a couple of transition-metal oxides considered as key materials to solve the pending problems, and investigate their charge dynamics and Mott transition features via spectroscopy. In this Chapter, we briefly overview the theoretical formalisms of the Mott transition, materials systematics ranging over a set of the 3d transition-metal oxides, charge-spin-orbital degrees of freedom, and some fundamental and important features of the charge dynamics observed near the Mott transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Boer JH, Verwey EJW (1937) Proc Phys Soc 49:59

    Article  ADS  Google Scholar 

  2. Mott NF, Peierls R (1937) Proc Phys Soc 49:72

    Article  ADS  Google Scholar 

  3. Mott NF (1937) Proc Phys Soc A 62:416

    Article  ADS  Google Scholar 

  4. Imada M, Fujimori A, Tokura Y (1998) Rev Mod Phys 70:1039

    Article  ADS  Google Scholar 

  5. Hubbard J (1964) Proc R Soc London A 281:401

    Article  ADS  Google Scholar 

  6. Brinkman WF, Rice TM (1970) Phys Rev B 2:4302

    Article  ADS  Google Scholar 

  7. Georges A, Kotliar G, Krauth W, Rozenberg MJ (1996) Rev Mod Phys 68:13

    Article  MathSciNet  ADS  Google Scholar 

  8. Zhang XY, Rozenberg MJ, Kotliar G (1993) Phys Rev Lett 70:1666

    Article  ADS  Google Scholar 

  9. Rozenberg MJ, Kotliar G, Kajueter H, Thomas GA, Rapkine DH, Honig JM, Metcalf P (1995) Phys Rev Lett 75:105

    Article  ADS  Google Scholar 

  10. Fujimori A (1992) J Phys Chem Solids 53:1595

    Article  ADS  Google Scholar 

  11. Zaanen J, Sawatzky GA, Allen JW (1985) Phys Rev Lett 55:418

    Article  ADS  Google Scholar 

  12. Fujimori A, Minami F (1984) Phys Rev B 30:957

    Article  ADS  Google Scholar 

  13. Bocquet AE, Mizokawa T, Morikawa K, Fujimori A, Barman SR, Maiti K, Sarma DD, Tokura Y, Onoda Phys M (1996) Rev B 53:1161

    Google Scholar 

  14. Arima T, Tokura Y, Torrance JB (1993) Phys Rev B 48:17006

    Article  ADS  Google Scholar 

  15. Matsuno J, Okimoto Y, Kawasaki M, Tokura Y (2005) Phys Rev Lett 95:176404

    Article  ADS  Google Scholar 

  16. Tokura Y, Nagaosa N (2000) Science 288:462

    Article  ADS  Google Scholar 

  17. Tokura Y (2003) Phys Today 56:50

    Article  Google Scholar 

  18. Jirak Z, Krupicka S, Simsa Z, Dlouha M, Vratislav S (1985) J Magn Magn Mater 53:153

    Article  ADS  Google Scholar 

  19. Takano M, Takeda Y, (1983) Bull Inst Chem Res. Kyoto Univ. 61:406

    Google Scholar 

  20. Zaliznyak IA, Hill JP, Tranquada JM, Erwin R, Moritomo Y (2000) Phys Rev Lett 85:4353

    Article  ADS  Google Scholar 

  21. Chen CH, Cheong S-W, Cooper AS (1993) Phys Rev Lett 71:2461

    Article  ADS  Google Scholar 

  22. Kajimoto R, Ishizaka K, Yoshizawa H, Tokura Y (2003) Phys Rev B 67:014511

    Article  ADS  Google Scholar 

  23. Tranquada JM, Sternlieb BJ, Axe JD, Nakamura Y, Uchida S (1995) Nature 375:561

    Article  ADS  Google Scholar 

  24. Tokura Y (2006) Rep Prog Phys 69:797

    Article  ADS  Google Scholar 

  25. Ginzburg DM (1992) Physical Properties of High Temperature Superconductors, vol 3. World Scientific, Singapore

    Google Scholar 

  26. Okimoto Y, Katsufuji T, Okada Y, Arima T, Tokura Y (1995) Phys Rev B 51:9581

    Article  ADS  Google Scholar 

  27. Okimoto Y, Katsufuji T, Ishikawa T, Urushibara A, Arima T, Tokura Y (1995) Phys Rev Lett 75:109

    Article  ADS  Google Scholar 

  28. Uchida S, Ido T, Takagi H, Arima T, Tokura Y, Tajima S (1991) Phys Rev B 43:7942

    Article  ADS  Google Scholar 

  29. Takenaka K, Shiozaki R, Okuyama S, Nohara J, Osuka A, Takayanagi Y, Sugai S (2002) Phys Rev B 65:092405

    Article  ADS  Google Scholar 

  30. Damascelli A, Hussain Z, Shen Z-X (2003) Rev Mod Phys 75:473

    Article  ADS  Google Scholar 

  31. Yoshida T, Zhou XJ, Sasagawa T, Yang WL, Bogdanov PV, Lanzara A, Hussain Z, Mizokawa T, Fujimori A, Eisaki H, Shen Z-X, Kakeshita T, Uchida S (2003) Phys Rev Lett 91:027001

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Uchida .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Uchida, M. (2013). Introduction. In: Spectroscopic Study on Charge-Spin-Orbital Coupled Phenomena in Mott-Transition Oxides. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54297-1_1

Download citation

Publish with us

Policies and ethics