Skip to main content

Is Axially Asymmetric Nucleus \(\gamma \) Rigid or Unstable?

  • Chapter
  • First Online:
  • 493 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

One of the important consequences of the analyses in Chaps. 4 and 5 concerns the issue of the regularity in the level structure of non-axial (or \(\gamma \)-soft) nuclei. For the past decades, structure of the non-axial nuclei has been studied based on the two major geometrical pictures: the rigid-triaxial rotor model of Davydov and Filippov and the \(\gamma \)-unstable rotor model of Wilets and Jean. Since vast majority of the observed non-axial nuclei fall exactly in between the two geometrical models, the relation between the two has been of intriguing subject from the theoretical point of view. In the IBM framework, the non-axial nuclei have been described only by the O(6) dynamical symmetry, which is nothing but a realization of the \(\gamma \)-unstable rotor picture. Any IBM Hamiltonian with O(6) symmetry, provided it is composed of only up to two-body terms, can never reproduce the level structure of non-axially symmetric nuclei, mainly because the two-body Hamiltonian does not reproduce a stable triaxial minimum which is however seen in microscopic energy surface. We then propose to introduce an essential three-body boson term in the proton-neutron IBM so as to reflect the microscopic calculation. With such suitably chosen boson Hamiltonian, we demonstrate that the above-mentioned empirical feature of non-axial nuclei can be explained naturally and that the finding resulting from this study is independent of the type of the EDFs used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bohr A, Mottelson BR (1969, 1975) Nuclear structure, vol I Single-particle motion: vol. II Nuclear deformations. Benjamin, New York

    Google Scholar 

  2. Herzberg G (1945) Molecular spectra and molecular structure, vol II. Van Nostrand, New York

    Google Scholar 

  3. Davydov AS, Filippov GF (1958) Rotational states in even atomic nuclei. Nucl Phys 8:237

    Article  Google Scholar 

  4. Wilets L, Jean M (1956) Surface oscillations in even-even nuclei. Phys Rev 102:788

    Article  ADS  MATH  Google Scholar 

  5. Ring P, Schuck P (1980) The nuclear many-body problem. Springer, Berlin

    Google Scholar 

  6. Arima A, Iachello F (1975) Collective nuclear states as representations of a SU(6) group. Phys Rev Lett 35:1069

    Article  ADS  Google Scholar 

  7. Iachello F, Arima A (1987) The interacting boson model. Cambridge University Press, Cambridge

    Book  Google Scholar 

  8. Casten RF (1990) Nuclear structure from a simple perspective. Oxford University Press, Oxford

    Google Scholar 

  9. Bender M, Heenen P-H, Reinhard P-G (2003) Self-consistent mean-field models for nuclear structure. Rev Mod Phys 75:121–180

    Article  ADS  Google Scholar 

  10. Erler J, Klüpfel P, Reinhard P-G (2011) Self-consistent nuclear mean-field models: example Skyrme Hartree Fock. J Phys G Nucl Part Phys 38:033101

    Article  ADS  Google Scholar 

  11. Decharge J, Girod M, Gogny D (1975) Self consistent calculations and quadrupole moments of even Sm isotopes. Phys Lett B 55:361

    Article  ADS  Google Scholar 

  12. Vretenar D, Afanasjev AV, Lalazissis GA, Ring P (2005) Relativistic Hartree Bogoliubov theory: static and dynamic aspects of exotic nuclear structure. Phys Rep 409:101

    Article  ADS  Google Scholar 

  13. Nikšić T, Vretenar D, Ring P (2011) Relativistic nuclear energy density functionals: mean-field and beyond. Prog Part Nucl Phys 66:519

    Article  ADS  Google Scholar 

  14. Bender M, Heenen P-H (2008) Configuration mixing of angular-momentum and particle-number projected triaxial Hartree-Fock-Bogoliubov states using the Skyrme energy density functional. Phys Rev C 78:024309

    Article  ADS  Google Scholar 

  15. Rodríguez TR, Egido JL (2010) Triaxial angular momentum projection and configuration mixing calculations with the Gogny force. Phys Rev C 81:064323

    Article  ADS  Google Scholar 

  16. Nikšić T, Vretenar D, Lalazissis GA, Ring P (2007) Microscopic description of nuclear quantum phase transitions. Phys Rev Lett 99:092502

    Article  ADS  Google Scholar 

  17. Nomura K, Shimizu N, Otsuka T (2008) Mean-field derivation of the interacting boson model Hamiltonian and exotic nuclei. Phys Rev Lett 101:142501

    Article  ADS  Google Scholar 

  18. Nikšić T, Vretenar D, Ring P (2008) Relativistic nuclear energy density functionals: adjusting parameters to binding energies. Phys Rev C 78:034318

    Article  ADS  Google Scholar 

  19. Bonche P, Flocard H, Heenen PH (2005) Solution of the Skyrme HF+BCS equation on a 3D mesh. Comput Phys Commun 171:49

    Article  ADS  Google Scholar 

  20. Bartel J, Quentin Ph, Brack M, Guet C, Håkansson H-B (1982) Towards a better parametrisation of Skyrme-like effective forces: a critical study of the SkM force. Nucl Phys A386:79

    Article  ADS  Google Scholar 

  21. Nomura K, Shimizu N, Vretenar D, Nikšić T, Otsuka T (2012) Robust regularity in \(\gamma \)-soft nuclei and its novel microscopic realization. Phys Rev Lett 108:132501

    Article  ADS  Google Scholar 

  22. Arima A, Iachello F (1979) Interacting boson model of collective states: IV. The O(6) limit. Ann Phys 123:468–492

    Article  ADS  Google Scholar 

  23. Ginocchio JN, Kirson MW (1980) Relationship between the Bohr collective Hamiltonian and the interacting-boson model. Phys Rev Lett 44:1744

    Article  MathSciNet  ADS  Google Scholar 

  24. Casten RF, Aprahamian A, Warner DD (1984) Axial asymmetry and the determination of effective \(\gamma \) values in the interacting boson approximation. Phys Rev C 29:356

    Article  ADS  Google Scholar 

  25. Castaños O, Frank A, Van Isacker P (1984) Effective triaxial deformations in the interacting-boson model. Phys Rev Lett 52:263

    Article  ADS  Google Scholar 

  26. Otsuka T, Sugita M (1987) Equivalence between \(\gamma \) instability and rigid triaxiality in finite boson systems. Phys Rev Lett 59:1541

    Article  ADS  Google Scholar 

  27. Otsuka T, Arima A, Iachello F (1978) Shell model description of interacting bosons. Nucl Phys A309:1

    Article  ADS  Google Scholar 

  28. Heyde K, Van Isacker P, Waroquier M, Moreau J (1984) Triaxial shapes in the interacting boson model. Phys. Rev. C29:1420

    Google Scholar 

  29. Van Isacker P, Chen J-Q (1981) Classical limit of the interacting boson Hamiltonian. Phys Rev C24:684

    ADS  Google Scholar 

  30. Nomura K, Shimizu N, Otsuka T (2010) Formulating the interacting boson model by mean-field methods. Phys Rev C 81:044307

    Article  ADS  Google Scholar 

  31. Brookhaven National Nuclear Data Center (NNDC). http://www.nndc.bnl.gov/nudat2/index.jsp

  32. Baglin CM (2002) Nucl Data Sheets 96:611

    Google Scholar 

  33. Balraj S (1995) Nucl Data Sheets 75:199

    Article  Google Scholar 

  34. Browne E, Junde H (1999) Nucl Data Sheets 87:15

    Article  ADS  Google Scholar 

  35. Basunia MS (2006) Nucl Data Sheets 107:791

    Article  ADS  Google Scholar 

  36. Achterberg E et al (2009) Nucl Data Sheets 110:1473

    Article  ADS  Google Scholar 

  37. Wu S-C, Niu H (2003) Nucl Data Sheets 100:483

    Article  ADS  Google Scholar 

  38. Singh B, Firestone RB (1995) Nucl Data Sheets 74:383

    Article  ADS  Google Scholar 

  39. Baglin CM (2010) Nucl Data Sheets 111:275

    Article  ADS  Google Scholar 

  40. Baglin CM (2003) Nucl Data Sheets 99:1

    Article  ADS  Google Scholar 

  41. Singh B (2002) Nucl Data Sheets 95:387

    Article  ADS  Google Scholar 

  42. Singh B (2003) Nucl Data Sheets 99:275

    Article  ADS  Google Scholar 

  43. Baglin CM (1998) Nucl Data Sheets 84:717

    Article  ADS  Google Scholar 

  44. Singh B (2006) Nucl Data Sheets 107:1531

    Article  ADS  Google Scholar 

  45. Xiaolong H (2007) Nucl Data Sheets 108:1093

    Article  ADS  Google Scholar 

  46. Xiaolong H (2007) Nucl Data Sheets 110:2533

    Article  ADS  Google Scholar 

  47. Kondeva FG, Lalkovski S (2007) Nucl Data Sheets 108:1471

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Nomura .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Nomura, K. (2013). Is Axially Asymmetric Nucleus \(\gamma \) Rigid or Unstable?. In: Interacting Boson Model from Energy Density Functionals. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54234-6_6

Download citation

Publish with us

Policies and ethics