Skip to main content

Pore Formation in Poly(divinylbenzene) Networks Derived from Organotellurium-Mediated Living Radical Polymerization

  • Chapter
  • First Online:
  • 1420 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Macroporous cross-linked polymeric dried gels have been obtained by inducing phase separation in a homogeneous poly(divinylbenzene) (PDVB) network formed by organotellurium-mediated living radical polymerization (TERP). The living polymerization reaction of DVB with the coexistence of a non-reactive polymeric agent, poly(dimethylsiloxane) (PDMS), in a solvent, 1,3,5-trimethylbenzene (TMB) resulted in polymerization-induced phase separation (spinodal decomposition), and the transient structure of spinodal decomposition has been “frozen” by gelation. Well-defined macroporous monolithic dried gels with bicontinuous structure in the micrometer scale are obtained after removing PDMS and TMB by simple washing and drying. Inside the skeletons that comprise the macroporous structure, “skeletal pores” with various sizes in nanometer scale have also been found by gas sorption measurements. The skeletal pores are deduced to be formed by secondary phase separation in the skeletons due to the thermodynamic instability that arises in the separated phases during the polymerization. The effects of the starting composition, molecular weight of PDMS, and the reaction temperature on the characteristics of the resultant macropores as well as the skeletal pores have been investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Webster OW (1991) Living polymerization methods. Science 251:887–893. doi:10.1126/science.251.4996.887

    Article  CAS  Google Scholar 

  2. Ide N, Fukuda T (1997) Nitroxide-controlled free-radical copolymerization of vinyl and divinyl monomers. Evaluation of pendant-vinyl reactivity. Macromolecules 30:4268–4271. doi:10.1021/ma9700946

    Article  CAS  Google Scholar 

  3. Ide N, Fukuda T (1999) Nitroxide-controlled free-radical copolymerization of vinyl and divinyl monomers. 2 Gelation. Macromolecules 32:95–99. doi:10.1021/ma9805349

    Article  CAS  Google Scholar 

  4. Jiang C, Shen Y, Zhu S, Hunkeler D (2001) Gel formation in atom transfer radical polymerization of 2-(N, N-dimethylamino)ethyl methacrylate and ethylene glycol dimethacrylate. J Polym Sci A Polym Chem 39:3780–3788. doi:10.1002/pola.10023

    Article  CAS  Google Scholar 

  5. Norisuye T, Morinaga T, Tran-Cong-Miyata Q, Goto A, Fukuda T, Shibayama M (2005) Comparison of the gelation dynamics for polystyrenes prepared by conventional and living radical polymerizations: a time-resolved dynamic light scattering study. Polymer 46:1982–1994. doi:10.1016/j.polymer.2004.12.043

    Article  CAS  Google Scholar 

  6. Yu Q, Zhou M, Ding Y, Jiang B, Zhu S (2007) Development of networks in atom transfer radical polymerization of dimethacrylates. Polymer 48:7058–7064. doi:10.1016/j.polymer.2007.10.001

    Article  CAS  Google Scholar 

  7. Gao H, Min K, Matyjaszewski K (2007) Determination of gel point during atom transfer radical copolymerization with cross-linker. Macromolecules 40:7763–7770. doi:10.1021/ma071324b

    Article  CAS  Google Scholar 

  8. Gao H, Li W, Matyjaszewski K (2008) Synthesis of polyacrylate networks by ATRP: parameters influencing experimental gel points. Macromolecules 41:2335–2340. doi:10.1021/ma702823b

    Article  CAS  Google Scholar 

  9. Yu Q, Qin Z, Li J, Zhu S (2008) Diffusion-controlled atom transfer radical polymerization with crosslinking. Polym Eng Sci 48:1254–1260. doi:10.1002/pen.21082

    Article  CAS  Google Scholar 

  10. Bastide J, Leibler L (1988) Large-scale heterogeneities in randomly cross-linked network. Macromolecules 21:2647–2649. doi:10.1021/ma00186a058

    Article  CAS  Google Scholar 

  11. Chiu YY, Lee J (1995) Microgel formation in the free radical crosslinking polymerization of ethylene glycol dimethacrylate (EGDMA) I experimental. J Polym Sci A Polym Chem 33:257–267. doi:10.1002/pola.1995.080330208

    Article  CAS  Google Scholar 

  12. Chiu YY, Lee J (1995) Microgel formation in the free radical crosslinking polymerization of ethylene glycol dimethacrylate (EGDMA) II Simulation. J Polym Sci A Polym Chem 33:269–283. doi:10.1002/pola.1995.080330209

    Article  CAS  Google Scholar 

  13. Norisuye T, Kida Y, Masui N, Tran-Cong-Miyata Q, Maekawa Y, Yoshida M, Shibayama M (2003) Studies on two types of built-in inhomogeneities for polymer gels: frozen segmental concentration fluctuations and spatial distribution of cross-links. Macromolecules 36:6202–6212. doi:10.1021/ma030067h

    Article  CAS  Google Scholar 

  14. Shibayama M (2006) Universality and specificity of polymer gels viewed by scattering methods. Bull Chem Soc Jpn 79:1799–1819. doi:10.1246/bcsj.79.1799

    Article  CAS  Google Scholar 

  15. Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25:711–779. doi:10.1016/S0079-6700(00)00015-0

    Article  CAS  Google Scholar 

  16. Peters EC, Petro M, Svec F, Fréchet JMJ (1997) Molded rigid polymer monoliths as separation media for capillary electrochromatography. Anal Chem 69:3646–3649. doi:10.1021/ac970377w

    Article  CAS  Google Scholar 

  17. Gusev I, Huang X, Horváth C (1999) Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography. J Chromatogr A 855:273–290. doi:10.1016/S0021-9673(99)00697-4

    Article  CAS  Google Scholar 

  18. Krajnc P, Leber N, Stefanec D, Kontrec S, Podgornik A (2005) Preparation and characterisation of poly(high internal phase emulsion) methacrylate monoliths and their application as separation media. J Chromatogr A 1065:69–73. doi:10.1016/j.chroma.2004.10.051

    Article  CAS  Google Scholar 

  19. Svec F (2005) Recent developments in the field of monolithic stationary phases for capillary electrochromatography. J Sep Sci 28:729–745. doi:10.1002/jssc.200400086

    Article  CAS  Google Scholar 

  20. Buchmeiser MR (2007) Polymeric monolithic materials: syntheses, properties, functionalization and applications. Polymer 48:2187–2198. doi:10.1016/j.polymer.2007.02.045

    Article  CAS  Google Scholar 

  21. Kanamori K, Nakanishi K, Hanada T (2006) Rigid macroporous poly(divinylbenzene) monoliths with a well-defined bicontinuous morphology prepared by living radical polymerization. Adv Mater 18:2407–2411. doi:10.1002/adma.200601026

    Article  CAS  Google Scholar 

  22. Kanamori K, Hasegawa J, Nakanishi K, Hanada T (2008) Facile synthesis of macroporous cross-linked methacrylate gels by atom transfer radical polymerization. Macromolecules 41:7186–7193. doi:10.1021/ma800563p

    Article  CAS  Google Scholar 

  23. Yamago S, Iida K, Yoshida J (2002) Organotellurium compounds as novel initiators for controlled/living radical polymerizations. Synthesis of functionalized polystyrenes and end-group modifications. J Am Chem Soc 124:2874–2875. doi:10.1021/ja025554b

    Article  CAS  Google Scholar 

  24. Yamago S, Iida K, Yoshida J (2002) Tailored synthesis of structurally defined polymers by organotellurium-mediated living radical polymerization (TERP): synthesis of poly(meth)acrylate derivatives and their Di- and triblock copolymers. J Am Chem Soc 124:13666–13667. doi:10.1021/ja027599i

    Article  CAS  Google Scholar 

  25. Goto A, Kwak Y, Fukuda T, Yamago S, Iida K, Nakajima M, Yoshida J (2003) Mechanism-based invention of high-speed living radical polymerization using organotellurium compounds and azo-initiators. J Am Chem Soc 125:8720–8721. doi:10.1021/ja035464m

    Article  CAS  Google Scholar 

  26. Yamago S (2006) Development of organotellurium-mediated and organostibine-mediated living radical polymerization reactions. J Polym Sci A Polym Chem 44:1–12. doi:10.1002/pola.21154

    Article  CAS  Google Scholar 

  27. Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: Features, developments, and perspectives. Prog Polym Sci 32:93–146. doi:10.1016/j.progpolymsci.2006.11.002

    Article  CAS  Google Scholar 

  28. Hashimoto T, Itakura M, Hasegawa H (1986) Late stage spinodal decomposition of a binary polymer mixture. 1 Critical test of dynamic scaling on scattering function. J Chem Phys 85:6118–6128. doi:10.1063/1.451477

    Article  CAS  Google Scholar 

  29. Hashimoto T, Itakura M, Shimidzu N (1986) Late stage spinodal decomposition of a binary polymer mixture. 2 Scaling analyses on Q m (τ) and I m (τ). J Chem Phys 85:6773–6786. doi:10.1063/1.451409

    Article  CAS  Google Scholar 

  30. Flory PJ (1971) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  31. Small PA (1953) Some factors affecting the solubility of polymers. J Appl Chem 3:71–80

    Article  CAS  Google Scholar 

  32. Ashworth AJ, Price GJ (1986) Comparison of static with gas-chromatographic interaction parameters and estimation of the solubility parameter for poly(dimethylsiloxane). Macromolecules 19:362–363. doi:10.1021/ma00156a022

    Article  CAS  Google Scholar 

  33. Nose T (1995) Coexistence curves of polystyrene poly(dimethylsiloxane) blends. Polymer 36:2243–2248. doi:10.1016/0032-3861(95)95303-I

    Article  CAS  Google Scholar 

  34. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  35. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity. Pure Appl Chem 57:603–619. doi:10.1351/pac198557040603

    Article  CAS  Google Scholar 

  36. Ohnaga T, Chen W, Inoue T (1994) Structure development by reaction-induced phase-separation in polymer mixtures computer simulation of the spinodal decomposition under the non-isoquench depth. Polymer 35:3774–3781

    Article  CAS  Google Scholar 

  37. Inoue T (1995) Reaction-induced phase-decomposition in polymer blends. Prog Polym Sci 20:119–153. doi:10.1016/0079-6700(94)00032-W

    Article  CAS  Google Scholar 

  38. Girard-Reydet E, Stautereau H, Pascault JP, Keates P, Navard P, Thollet G, Vigier G (1998) Reaction-induced phase separation mechanisms in modified thermosets. Polymer 39:2269–2280. doi:10.1016/S0032-3861(97)00425-4

    Article  CAS  Google Scholar 

  39. Tanaka H (1993) Pattern-formation caused by double quenches in binary polymer mixtures: response of phase-separated structure to a 2nd quench within a 2-phase region. Phys Rev E 47:2946–2949. doi:10.1103/PhysRevE.47.2946

    Article  CAS  Google Scholar 

  40. Tao J, Okada M, Nose T (1995) Phase-separation induced by a 2-step temperature-jump in polystyrene/poly(2-chlorostyrene) blends: dependence on duration and temperature of the first step. Polymer 36:3909–3917. doi:10.1016/0032-3861(95)99785-S

    Article  CAS  Google Scholar 

  41. Sigehuzi T, Tanaka H (2004) Coarsening mechanism of phase separation caused by a double temperature quench in an off-symmetric binary mixture. Phys Rev E 70:051504. doi:10.1103/PhysRevE.70.051504

    Article  Google Scholar 

  42. Greszta D, Matyjaszewski K (1997) TEMPO-mediated polymerization of styrene: rate enhancement with dicumyl peroxide. J Polym Sci A Polym Chem 35:1857–1861. doi:10.1002/(SICI)1099-0518(19970715)35:9<1857:AID-POLA27>3.0.CO;2-3

    Article  CAS  Google Scholar 

  43. Goto A, Fukuda T (1997) Effects of radical initiator on polymerization rate and polydispersity in nitroxide-controlled free radical polymerization. Macromolecules 30:4272–4277. doi:10.1021/ma9702152

    Article  CAS  Google Scholar 

  44. Yoshikawa C, Goto A, Fukuda T (2003) Quantitative comparison of theory and experiment on living radical polymerization kinetics. 2 Atom transfer radical polymerization. Macromolecules 36:908–912. doi:10.1021/ma021497v

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Hasegawa .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this chapter

Cite this chapter

Hasegawa, G. (2013). Pore Formation in Poly(divinylbenzene) Networks Derived from Organotellurium-Mediated Living Radical Polymerization. In: Studies on Porous Monolithic Materials Prepared via Sol–Gel Processes. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54198-1_2

Download citation

Publish with us

Policies and ethics