Skip to main content

Hydroxyl Dimer: Non-linear IV Characteristics in an STM Junction

  • Chapter
  • First Online:
Visualization of Hydrogen-Bond Dynamics

Part of the book series: Springer Theses ((Springer Theses,volume 125))

  • 783 Accesses

Abstract

I describe the assembly and characterization of a hydroxyl dimer on a Cu(110) surface in this chapter. A dimer is produced by the reaction between a water and atomic oxygen with the STM manipulation. Hydroxyl groups in a dimer have an inclined geometry in common with a monomer and flips back and forth between two states. Although the tunneling switching observed for a monomer is quenched for a dimer due to the formation of H bond between hydroxyl groups as well as the increased mass effect, the switching can be induced by the vibrational excitation via the inelastic electron tunneling process. It is found that the switching results in non-linear characteristics in the averaged IV curve measured over a dimer. I propose a model describing the relation between the vibrational excitation and non-linear IV characteristics in the STM junction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 The OH dimer is put on one side of a three-layer Cu slab arrayed in a 3 × 3 surface unit cell. The other conditions are the same with the monomer described in Sect. 7.2.2.

References

  1. F. Moresco, G. Meyer, K-H. Rieder, H. Tang, A. Gourdon, C. Joachim, Phys. Rev. Lett. 86, 672 (2001)

    Google Scholar 

  2. S.W. Wu, N. Ogawa, W. Ho, Science 312, 1362 (2006)

    Article  CAS  Google Scholar 

  3. V. Iancu, S.-W. Hla, Proc. Natl. Acad. Sci. USA 103, 13718 (2006)

    Article  CAS  Google Scholar 

  4. J. Henzl, M. Mehlhorn, H. Gawronski, K-H. Rieder, K. Morgenstern, Chem. Int. Ed. 45, 603 (2006)

    Google Scholar 

  5. B.-Y. Choi, S.-J. Kahng, S. Kim, H. Kim, H.W. Kim, Y.J. Song, J. Ihm, Y. Kuk, Phys. Rev. Lett. 96, 156106 (2006)

    Article  Google Scholar 

  6. M.J. Comstock, N. Levy, A. Kirakosian, J. Cho, F. Lauterwasser, J.H. Harvey, D.A. Strubbe, J.M.J. Fréchet, D. Trauner, S.G. Louie, M.F. Crommie, Phys. Rev. Lett. 99, 038301 (2007)

    Article  Google Scholar 

  7. Y. Wang, J. Kröger, R. Berndt, W.A. Hofer, J. Am. Chem. Soc. 131, 3639 (2009)

    Article  CAS  Google Scholar 

  8. T. Komeda, H. Isshiki, J. Liu, Y-F. Zhang, N. Lorente, K. Katoh, B.K. Breedlove, M. Yamashita, Nate commun 2, 217 (2011)

    Google Scholar 

  9. A. Aviram, M. Ratner, Molecular Electronics: Science and Technology (New York Academy of Sciences, New York, 1998)

    Google Scholar 

  10. M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, J.M. Tour, Science 278, 252 (1997)

    Article  CAS  Google Scholar 

  11. A. Rampi, O.J.A. Schueller, G.M. Whitesides, Appl. Phys. Lett. 72, 1781 (1998)

    Google Scholar 

  12. R. Haag, M.A. Rampi, R.E. Holmlin, G.M. Whitesides, J. Am. Chem. Soc. 121, 7895 (1999)

    Google Scholar 

  13. R.E. Holmlin, R. Haag, M.L. Chabinyc, R.F. Ismagilov, A.E. Cohen, A. Terfort, M.A. Rampi, G.M. Whitesides, J. Am. Chem. Soc. 123, 5075 (2001)

    Google Scholar 

  14. M.A. Rampi, G.M. Whitesides, Chem. Phys. 281, 373 (2002)

    Google Scholar 

  15. J.K.N. Mbindyo, T.E. Mallouk, J.B. Mattzela, I. Kratochvilova, B. Razavi, T.N. Jackson, T.S. Mayer, J. Am. Chem. Soc. 124, 4020 (2002)

    Article  CAS  Google Scholar 

  16. C. Zhou, M.R. Deshpande, M.A. Reed, L. Jones, J.M. Tour, Appl. Phys. Lett. 71, 611 (1997)

    Article  CAS  Google Scholar 

  17. X.-L. Fan, C. Wang, D.-L. Yang, L.-J. Wan, C. Bai, Chem. Phys. Lett. 361, 465 (2002)

    Article  CAS  Google Scholar 

  18. L.A. Bumm, J.J. Arnold, M.T. Cygan, T.D. Dunbar, T.P. Burgin, L. Jones II, D.L. Allara, J.M. Tour, P.S. Weiss, Science 271, 1705 (1996)

    Article  CAS  Google Scholar 

  19. L.A. Bumm, J.J. Arnold, T.D. Dunbar, D.L. Allara, P.S. Weiss, J. Phys. Chem. B 103, 8122 (1999)

    Article  CAS  Google Scholar 

  20. S. Datta, W.D. Tian, S.H. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak, Phys. Rev. Lett. 79, 2530 (1997)

    Google Scholar 

  21. Y.Q. Xue, S. Datta, S.H. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak, Phys. Rev. B 59, R7852 (1999)

    Google Scholar 

  22. C. Zeng, H. Wang, B. Wang, J. Yang, J.G. Hou, Appl. Phys. Lett. 77, 3595 (2000)

    Article  CAS  Google Scholar 

  23. K. Takanashi, S. Mitani, J. Chiba, H. Fujimori, J. Appl. Phys. 87, 6331 (2000)

    Article  CAS  Google Scholar 

  24. X.D. Cui, A. Primak, X. Zarate, J. Tomfohr, O.F. Sankey, A.L. Moore, T.A. Moore, D. Gust, G. Harris, S.M. Lindsay, Science 264, 571 (2001)

    Article  Google Scholar 

  25. F.-R.F. Fan, J. Yang, L. Cai, D.W. Price Jr, S.M. Dirk, D.V. Kosynkin, Y. Yao, A.M. Rawlett, J.M. Tour, A.J. Bard, J. Am. Chem. Soc. 124, 5550 (2002)

    Article  CAS  Google Scholar 

  26. D.J. Wold, R. Haag, M.A. Rampi, C.D. Frisbie, J. Phys. Chem. B 106, 2813 (2002)

    Article  CAS  Google Scholar 

  27. J.G. Kushmerick, D.B. Holt, S.K. Pollack, M.A. Ratner, J.C. Yang, T.L. Schull, J. Naciri, M.H. Moore, R. Shashidhar, J. Am. Chem. Soc. 124, 10654 (2002)

    Article  CAS  Google Scholar 

  28. M. Dorogi, J. Gomez, R. Osifchin, R.P. Andres, R. Reifenberger, Phys. Rev. B 52, 9071 (1995)

    Article  CAS  Google Scholar 

  29. H. Park, A.K.L. Lim, A.P. Alivisatos, J. Park, P.L. McEuen, Appl. Phys. Lett. 75, 301 (1999)

    Article  CAS  Google Scholar 

  30. J. Gaudioso, L.J. Lauhon, W. Ho, Phys. Rev. Lett. 85, 1918 (2000)

    Article  CAS  Google Scholar 

  31. J.A. Gupta, C.P. Lutz, A.J. Heinrich, D.M. Eigler, Phys. Rev. B 71, 115416 (2005)

    Article  Google Scholar 

  32. W.H.A. Thijssen, D. Djukic, A.F. Otte, R.H. Bremmer, J.M. van Ruitenbeek, Phys. Rev. Lett. 97, 226806 (2006)

    Article  CAS  Google Scholar 

  33. A. Halbritter, P. Makk, Sz. Csonka, and G. Mihály. Phys. Rev. B 77, 075402 (2008)

    Article  Google Scholar 

  34. B.C. Stipe, M.A. Rezaei, W. Ho, Science 280, 1732 (1998)

    Article  CAS  Google Scholar 

  35. L.E. Firment, G.A. Somorjai, J. Chem. Phys. 63, 1037 (1975)

    Article  CAS  Google Scholar 

  36. D.A. Schmidt, K. Miki, J. Phy, Chem. A 111, 10119 (2007)

    CAS  Google Scholar 

  37. M. Stuve, S.W. Jorgensen, R.J. Madix, Surf. Sci. 146, 179 (1984)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kumagai .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Japan

About this chapter

Cite this chapter

Kumagai, T. (2012). Hydroxyl Dimer: Non-linear IV Characteristics in an STM Junction. In: Visualization of Hydrogen-Bond Dynamics. Springer Theses, vol 125. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54156-1_8

Download citation

Publish with us

Policies and ethics