Skip to main content

Hydroxyl Group: Tunneling Dynamics of Hydrogen Atom

  • Chapter
  • First Online:
  • 783 Accesses

Part of the book series: Springer Theses ((Springer Theses,volume 125))

Abstract

I describe the production and characterization of isolated hydroxyl species on a Cu(110) surface in this chapter. A hydroxyl group can be produced by the STM-induced dissociation of a water molecule. A hydroxyl can be further dissociated into atomic oxygen. It is found that a hydroxyl has an inclined geometry against the surface normal and switches back and forth between the two orientations via the H atom tunneling. The switching results in the characteristic paired depression aligned along the [001] direction in the STM appearance of hydroxyl. The tunneling switching can be observed directly for a deuterated species (OD) within the time-resolution of STM, while it is smeared out for an OH due to a significant increase of the tunneling rate. The switching is enhanced by the vibrational excitation of the OH(OD) bending mode which is directly associated with the switching reaction coordinate.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    DFT calculations were performed using the STATE code [Y. Morikawa et al. Phys. Rev. B 69, 041403 (2004).]. The OH was put on one side of a three-layer Cu slab arrayed in a 2 × 3 surface unit cell, and the vacuum region of 12.89 Å was inserted between slabs. A GGA-optimized lattice constant of 3.64 Å, which is 0.8 % larger than the experimental value of 3.61 Å, was used to construct the slabs. A (4 × 4) Monkhorst–Pack [H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).] k-point set was used to sample the surface Brillouin zone, and the Fermi level was treated by the first order Methfessel-Paxton scheme [M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).] with the 0.05 eV smearing width. During the structural optimization, adsorbates and two topmost Cu layers were allowed to relax until the forces on them were less than 0.05 eV/Å.

References

  1. R.P. Bell, The Tunnel Effect in Chemistry (Chapman and Hall, London, 1980)

    Google Scholar 

  2. K.W. Kehr, Hydrogen in Metals I and II, ed. by G. Alefeld, J. Völkl (Springer, Berlin, 1978)

    Google Scholar 

  3. Y. Moritomo, Y. Tokura, N. Nagaosa, T. Suzuki, K. Kumagai, Phys. Rev. Lett. 71, 2833 (1993)

    Article  CAS  Google Scholar 

  4. J.M.J. Swanson, C.M. Maupin, H. Chen, M.K. Petersen, J. Xu, Y. Wu, G.A. Voth, J. Phys. Chem. B 111, 4300 (2007)

    Article  CAS  Google Scholar 

  5. A. Kohen, R. Cannio, S. Bartolucci, J.P. Klinman, J.P. Klinman, Nature 399, 496 (1999)

    Article  CAS  Google Scholar 

  6. F. Hund, Z. Phys. 43, 805 (1927)

    Article  CAS  Google Scholar 

  7. K. Christmann, Surf. Sci. Rep. 9, 1 (1988)

    Article  Google Scholar 

  8. M.J. Puska, R.M. Nieminen, M. Manninen, B. Chakraborty, S. Holloway, J.K. Nørskov, Phys. Rev. Lett. 51, 1081 (1983)

    Article  CAS  Google Scholar 

  9. C.M. Mate, G.A. Somorjai, Phys. Rev. B 34, 7417 (1986)

    Article  CAS  Google Scholar 

  10. M. Nishijima, H. Okuyama, N. Takagi, T. Aruga, W. Brenig, Surf. Sci. Rep. 57, 113 (2005)

    Article  CAS  Google Scholar 

  11. R. Wortman, R. Gomer, R. Lundy, J. Chem. Phys. 27, 1099 (1957)

    Google Scholar 

  12. R. Gomer, R. Wortman, R. Lundy, J. Chem. Phys. 27, 1147 (1957)

    Google Scholar 

  13. L.J. Lauhon, W. Ho, Phys. Rev. Lett. 85, 4566 (2000)

    Google Scholar 

  14. L.J. Lauhon, W. Ho, Phys. Rev. Lett. 89, 079901(E) (2002)

    Google Scholar 

  15. A.J. Heinrich, C.P. Lutz, J.A. Gupta, D.M. Eigler, Science 298, 1381 (2002)

    Article  CAS  Google Scholar 

  16. J. Repp, G. Meyer, K.-H. Rieder, P. Hyldgaard, Phys. Rev. Lett. 91, 206102 (2003)

    Article  Google Scholar 

  17. J.A. Stroscio, R.J. Celotta, Science 306, 242 (2004)

    Article  CAS  Google Scholar 

  18. P.J. Feibelman, Science 295, 99 (2002)

    Article  CAS  Google Scholar 

  19. M. Forster, R. Raval, A. Hodgson, J. Carrasco, A. Michaelides, Phys. Rev. Lett. 106, 046103 (2011)

    Article  Google Scholar 

  20. M. Nagasaka, H. Kondoh, K. Amemiya, T. Ohta, Y. Iwasawa, Phys. Rev. Lett. 100, 106101 (2008)

    Article  CAS  Google Scholar 

  21. G.B. Fisher, J.L. Gland, Surf. Sci. 94, 446 (1980)

    Google Scholar 

  22. G.B. Fisher, B.A. Sexton, Phys. Rev. Lett. 44, 683 (1980)

    Google Scholar 

  23. T.S. Wittrig, D.E. Ibbotson, W.H. Weinberg, Surf. Sci. 102, 506 (1981)

    Article  CAS  Google Scholar 

  24. C. Ammon et al., Chem. Phys. Lett. 377, 163 (2003)

    Article  CAS  Google Scholar 

  25. G. Gilarowski, W. Erley, H. Ibach, Surf. Sci. 351, 156 (1996)

    Article  CAS  Google Scholar 

  26. L.J. Lauhon, W. Ho, J. Phys. Chem. 105, 3987 (2001)

    CAS  Google Scholar 

  27. K. Morgenstern, K.-H. Rieder, Chem. Phys. Lett. 358, 250 (2002)

    Article  CAS  Google Scholar 

  28. Mugarza, T. K. Shimizu, D F. Ogletree, M. Salmeron, Surf. Sci. 603, 2030 (2009)

    Google Scholar 

  29. H.-J. Shin, J. Jung, K. Motobayashi, S. Yanagisawa, Y. Morikawa, Y. Kim, M. Kawai, Nat. Mater. 9, 442 (2010)

    Article  CAS  Google Scholar 

  30. Q.-L. Tang, Z.-X. Chen, J. Chem. Phys. 127, 104707 (2007)

    Article  Google Scholar 

  31. J. Ren, S. Meng, J. Am. Chem. Soc. 128, 9282 (2006)

    Article  CAS  Google Scholar 

  32. J. Ren, S. Meng, Phys. Rev. B 77, 054110 (2008)

    Article  Google Scholar 

  33. B.G. Briner, M. Doering, H.-P. Rust, A.M. Bradshaw, Phys. Rev. Lett. 78, 1516 (1997)

    Article  CAS  Google Scholar 

  34. P. Avouris, R.E. Walkup, A.R. Rossi, H.C. Akpati, P. Nordlander, T.-C. Shen, G.C. Abeln, J.W. Lyding, Surf. Sci. 363, 368 (1996)

    Article  CAS  Google Scholar 

  35. M. Polak, Surf. Sci. 321, 249 (1994)

    Article  CAS  Google Scholar 

  36. E.R.M. Davidson, A. Alavi, A. Michaelides, Phys. Rev. B 81, 153410 (2010)

    Article  Google Scholar 

  37. B.C. Stipe, M.A. Rezaei, W. Ho, Phys. Rev. Lett. 82, 1724 (1999)

    Article  CAS  Google Scholar 

  38. W. Ho, J. Chem. Phys. 117, 11033 (2002)

    Article  CAS  Google Scholar 

  39. H. Ueba, T. Mii, S.G. Tikhodeev, Surf. Sci. 601, 5220 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kumagai .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Japan

About this chapter

Cite this chapter

Kumagai, T. (2012). Hydroxyl Group: Tunneling Dynamics of Hydrogen Atom. In: Visualization of Hydrogen-Bond Dynamics. Springer Theses, vol 125. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54156-1_7

Download citation

Publish with us

Policies and ethics