Skip to main content

Quantitative Analysis for p53 Tetramerization Domain Mutants Reveals a Low Threshold for Tumor Suppressor Inactivation

  • Chapter
  • First Online:
  • 522 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The tumor suppressor p53, a 393 amino acid transcription factor, induces cell cycle arrest and apoptosis in response to genotoxic stress. Its inactivation via the mutation of its gene is a key step in tumor progression, and tetramer formation is critical for p53 post-translational modification and its ability to activate or repress the transcription of target genes vital in inhibiting tumor growth. About 50 % of human tumors have TP53 gene mutations; most are missense ones that presumably lower p53′s tumor suppressor activity. In this study, I explored the effects of known tumor-derived missense mutations on the stability and oligomeric structure of p53; these comprehensive, quantitative analyses encompassed the tetramerization domain peptides representing 50 such substitutions in humans. Their effects on tetrameric structure were broad, and the stability of the mutant peptides varied widely (ΔT m = 4.8~ -46.8 °C). Because formation of a tetrameric structure is critical for protein–protein interactions, DNA binding, and the post-translational modification of p53, a small destabilization of the tetrameric structure could result in dysfunction of tumor suppressor activity. I suggest that the threshold for loss of tumor suppressor activity in terms of the disruption of p53′s tetrameric structure could be extremely low. However, other properties of the tetramerization domain, such as electrostatic surface potential and its ability to bind partner proteins, also may be important.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  Google Scholar 

  2. Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355

    Article  CAS  Google Scholar 

  3. Zilfou JT, Lowe SW (2009) Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 2:a000935–a000935

    Google Scholar 

  4. Meek DW, Anderson CW (2009) Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb 1–16: 528–536

    Google Scholar 

  5. Halazonetis TD, Kandil AN (1993) Conformational shifts propagate from the oligomerization domain of p53 to its tetrameric DNA binding domain and restore DNA binding to select p53 mutants. EMBO J 12:5057–5064

    CAS  Google Scholar 

  6. Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW, Appella E (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12:2831–2841

    Article  CAS  Google Scholar 

  7. Maki CG (1999) Oligomerization is required for p53 to be efficiently ubiquitinated by MDM2. J Biol Chem 274:16531–16535

    Article  CAS  Google Scholar 

  8. Shieh SY, Ahn J, Tamai K, Taya Y, Prives C (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14:289–300

    CAS  Google Scholar 

  9. Chene P (2001) The role of tetramerization in p53 function. Oncogene 20:2611–2617

    Article  CAS  Google Scholar 

  10. Warnock LJ, Knox A, Mee TR, Raines SA, Milner J (2008) Influence of tetramerisation on site-specific post-translational modifications of p53: comparison of human and murine p53 tumor suppressor protein. Cancer Biol Ther 7:1481–1489

    Article  CAS  Google Scholar 

  11. Itahana Y, Ke H, Zhang Y (2009) p53 Oligomerization is essential for its C-terminal lysine acetylation. J Biol Chem 284:5158–5164

    Article  CAS  Google Scholar 

  12. Pietsch EC, Perchiniak E, Canutescu AA, Wang G, Dunbrack RL, Murphy ME (2008) Oligomerization of BAK by p53 utilizes conserved residues of the p53 DNA binding domain. J Biol Chem 283:21294–21304

    Article  CAS  Google Scholar 

  13. Hainaut P, Hollstein M (2000) p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 77:81–137

    Article  CAS  Google Scholar 

  14. Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M (2007) Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat 28:622–629

    Article  CAS  Google Scholar 

  15. Joerger AC, Fersht AR (2010) The tumor suppressor p53: from structures to drug discovery. Cold Spring Harb Perspect 2(6):a000919–a000919

    Google Scholar 

  16. Clore GM, Ernst J, Clubb R, Omichinski JG, Kennedy WMP, Sakaguchi K, Appella E, Gronenborn AM (1995) Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nat Struct Biol 2:321–333

    Article  CAS  Google Scholar 

  17. Jeffrey PD, Gorina S, Pavletich NP (1995) Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267:1498–1502

    Article  CAS  Google Scholar 

  18. Mateu MG, Fersht AR (1998) Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain. EMBO J 17:2748–2758

    Article  CAS  Google Scholar 

  19. DiGiammarino EL, Lee AS, Cadwell C, Zhang W, Bothner B, Ribeiro RC, Zambetti G, Kriwacki RW (2002) A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat Struct Biol 9:12–16

    Article  CAS  Google Scholar 

  20. Davison TS, Yin P, Nie E, Kay C, Arrowsmith CH (1998) Characterization of the oligomerization defects of two p53 mutants found in families with Li-Fraumeni and Li-Fraumeni-like syndrome. Oncogene 17:651–656

    Article  CAS  Google Scholar 

  21. Lomax ME, Barnes DM, Hupp TR, Picksley SM, Camplejohn RS (1998) Characterization of p53 oligomerization domain mutations isolated from Li-Fraumeni and Li-Fraumeni like family members. Oncogene 17:643–649

    Article  CAS  Google Scholar 

  22. Atz J, Wagner P, Roemer K (2000) Function, oligomerization, and conformation of tumor-associated p53 proteins with mutated C-terminus. J Cell Biochem 76:572–584

    Article  CAS  Google Scholar 

  23. Rollenhagen C, Chene P (1998) Characterization of p53 mutants identified in human tumors with a missense mutation in the tetramerization domain. Int J Cancer 78:372–376

    Article  CAS  Google Scholar 

  24. Johnson CR, Morin PE, Arrowsmith CH, Freire E (1995) Thermodynamic analysis of the structural stability of the tetrameric oligomerization domain of p53 tumor suppressor. Biochemistry 34:5309–5316

    Article  CAS  Google Scholar 

  25. Maki CG, Huibregtse JM, Howley PM (1996) In vivo ubiquitination and proteasome-mediated degradation of p53(1), Cancer Res 56:2649–2654

    CAS  Google Scholar 

  26. Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R, Ishioka C (2003) Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100:8424–8429

    Article  CAS  Google Scholar 

  27. Kawaguchi T, Kato S, Otsuka K, Watanabe G, Kumabe T, Tominaga T, Yoshimoto T, Ishioka C (2005) The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library. Oncogene 24:6976–6981

    Article  CAS  Google Scholar 

  28. Imagawa T, Terai T, Yamada Y, Kamada R, Sakaguchi K (2009) Evaluation of transcriptional activity of p53 in individual living mammalian cells. Anal Biochem 387:249–256

    Article  CAS  Google Scholar 

  29. Nomura T, Kamada R, Ito I, Chuman Y, Shimohigashi Y, Sakaguchi K (2009) Oxidation of methionine residue at hydrophobic core destabilizes p53 tetrameric structure. Biopolymers 91:78–84

    Article  CAS  Google Scholar 

  30. Sakaguchi K, Sakamoto H, Lewis MS, Anderson CW, Erickson JW, Appella E, Xie D (1997) Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry 36:10117–10124

    Article  CAS  Google Scholar 

  31. Šli A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  Google Scholar 

  32. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5:741–747

    Article  CAS  Google Scholar 

  33. Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18:1660–1672

    Article  CAS  Google Scholar 

  34. Fernandez-Fernandez MR, Veprintsev DB, Fersht AR (2005) Proteins of the S100 family regulate the oligomerization of p53 tumor suppressor. Proc Natl Acad Sci USA 102:4735–4740

    Article  CAS  Google Scholar 

  35. Wang YV, Wade M, Wong E, Li YC, Rodewald LW, Wahl GM (2007) Quantitative analyses reveal the importance of regulated Hdmx degradation for p53 activation. Proc Natl Acad Sci USA 104:12365–12370

    Article  CAS  Google Scholar 

  36. Swanson JA, Lee M, Knapp PE (1991) Cellular dimensions affecting the nucleocytoplasmic volume ratio. J Cell Biol 115:941–948

    Article  CAS  Google Scholar 

  37. Chene P (2000) Fast, qualitative analysis of p53 phosphorylation by protein kinases. Biotechniques 28:240–242

    CAS  Google Scholar 

  38. Sheng Y, Laister RC, Lemak A, Wu B, Tai E, Duan S, Lukin J, Sunnerhagen M, Srisailam S, Karra M, Benchimol S, Arrowsmith CH (2008) Molecular basis of Pirh2-mediated p53 ubiquitylation. Nat Struct Mol Biol 15:1334–1342

    Article  CAS  Google Scholar 

  39. Nie Y, Li HH, Bula CM, Liu X (2000) Stimulation of p53 DNA binding by c-Abl requires the p53 C terminus and tetramerization. Mol Cell Biol 20:741–748

    Article  CAS  Google Scholar 

  40. Foo RSY, Nam YJ, Ostreicher MJ, Metzl MD, Whelan RS, Peng CF, Ashton AW, Fu W, Mani K, Chin SF, Provenzano E, Ellis I, Figg N, Pinder S, Bennett MR, Caldas C, Kitsis RN (2007) Regulation of p53 tetramerization and nuclear export by ARC. Proc Natl Acad Sci USA 104:20826–20831

    Article  CAS  Google Scholar 

  41. van Dieck J, Fernandez–Fernandez MR, Veprintsev DB, Fersht AR (2009) Modulation of the oligomerization state of p53 by differential binding of proteins of the S100 family to p53 monomers and tetramers. J Biol Chem 284:13804–13811

    Article  Google Scholar 

  42. Rajagopalan S, Jaulent AM, Wells M, Veprintsev DB, Fersht AR (2008) 14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers. Nucleic Acids Res 36:5983–5991

    Article  CAS  Google Scholar 

  43. Soussi T, Kato S, Levy PP, Ishioka C (2005) Reassessment of the TP53 mutation database in human disease by data mining with a library of TP53 missense mutations. Hum Mutat 25:6–17

    Article  CAS  Google Scholar 

  44. Miller M, Lubkowski J, Rao JKM, Danishefsky AT, Omichinski JG, Sakaguchi K, Sakamoto H, Appella E, Gronenborn AM, Clore GM (1996) The oligomerization domain of p53: crystal structure of the trigonal form. FEBS Lett 399:166–170

    Article  CAS  Google Scholar 

  45. Merritt J, Roberts KG, Butz JA, Edwards JS (2007) Parallel analysis of tetramerization domain mutants of the human p53 protein using PCR colonies. Genomic Med 1:113–124

    Article  Google Scholar 

  46. Whibley C, Pharoah PD, Hollstein M (2009) p53 polymorphisms: cancer implications. Nat Rev Cancer 9:95–107

    Article  CAS  Google Scholar 

  47. Feng L, Hollstein M, Xu Y (2006) Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle 5:2812–2819

    Article  CAS  Google Scholar 

  48. Mantovani F, Tocco F, Girardini J, Smith P, Gasco M, Lu X, Crook T, Del Sal G (2007) The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nat Struct Mol Biol 14:912–920

    Article  CAS  Google Scholar 

  49. Bergamaschi D, Samuels Y, Sullivan A, Zvelebil M, Breyssens H, Bisso A, Del Sal G, Syed N, Smith P, Gasco M, Crook T, Lu X (2006) iASPP preferentially binds p53 proline-rich region and modulates apoptotic function of codon 72-polymorphic p53. Nat Genet 38:1133–1141

    Article  CAS  Google Scholar 

  50. Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, Onel K, Yip L, Hwang SJ, Strong LC, Lozano G, Levine AJ (2004) A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119:591–602

    Article  CAS  Google Scholar 

  51. Kamada R, Nomura T, Anderson CW, Sakaguchi K (2011) Cancer-associated p53 tetramerization domain mutants: quantitative analysis reveals a low threshold for tumor suppressor inactivation. J Biol Chem 286:252–258

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Kamada .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Japan

About this chapter

Cite this chapter

Kamada, R. (2012). Quantitative Analysis for p53 Tetramerization Domain Mutants Reveals a Low Threshold for Tumor Suppressor Inactivation. In: Tetramer Stability and Functional Regulation of Tumor Suppressor Protein p53. Springer Theses. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54135-6_2

Download citation

Publish with us

Policies and ethics