Skip to main content

Visual Screening for the Natural Compounds That Affect the Formation of Nuclear Structures

  • Conference paper
  • First Online:
Chembiomolecular Science

Abstract

In eukaryotic cells, there are two major compartments separated by the nuclear membrane: the nucleus, where transcription and replication of DNA occur, and the cytoplasm, where translation of mRNAs to proteins occurs. Interestingly, the interphase nucleus is further divided into a dozen subnuclear compartments, such as nucleoli, speckles, Cajal bodies, paraspeckles, promyelocytic leukemia (PML) bodies, and gems (for gemini of Cajal bodies) (Fig. 1) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao R, Bodnar MS, Spector DL (2009) Nuclear neighborhoods and gene expression. Curr Opin Genet Dev 19:172–179

    Article  PubMed  CAS  Google Scholar 

  2. Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938

    Article  PubMed  CAS  Google Scholar 

  3. Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612

    Article  PubMed  CAS  Google Scholar 

  4. Misteli T (2000) Cell biology of transcription and pre-mRNA splicing: nuclear architecture meets nuclear function. J Cell Sci 113:1841–1849

    PubMed  CAS  Google Scholar 

  5. Spector DL, Lamond AI (2011) Nuclear speckles. Cold Spring Harbor Perspect Biol 3: a000646

    Google Scholar 

  6. Wansink DG, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L (1993) Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol 122:283–293

    Article  PubMed  CAS  Google Scholar 

  7. Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature (Lond) 404:604–609

    Article  CAS  Google Scholar 

  8. Thiry M (1995) The interchromatin granules. Histol Histopathol 10:1035–1045

    PubMed  CAS  Google Scholar 

  9. Misteli T, Caceres JF, Spector DL (1997) The dynamics of a pre-mRNA splicing factor in ­living cells. Nature (Lond) 387:523–527

    Article  CAS  Google Scholar 

  10. Graveley BR (2001) Alternative splicing: increasing diversity in the proteomic world. Trends Genet 17:100–107

    Article  PubMed  CAS  Google Scholar 

  11. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415

    Article  PubMed  CAS  Google Scholar 

  12. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB (2008) Alternative isoform regulation in human tissue transcriptomes. Nature (Lond) 456:470–476

    Article  CAS  Google Scholar 

  13. Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    Article  PubMed  CAS  Google Scholar 

  14. Tokunaga K, Shibuya T, Ishihama Y, Tadakuma H, Ide M, Yoshida M, Funatsu T, Ohshima Y, Tani T (2006) Nucleocytoplasmic transport of fluorescent mRNA in living mammalian cells: nuclear mRNA export is coupled to ongoing gene transcription. Genes Cells 11:305–317

    Article  PubMed  CAS  Google Scholar 

  15. Mannen T, Andoh T, Tani T (2008) Dss1 associating with the proteasome functions in selective nuclear mRNA export in yeast. Biochem Biophys Res Commun 365:664–671

    Article  PubMed  CAS  Google Scholar 

  16. Long JC, Caceres JF (2009) The SR protein family of splicing factors: master regulators of gene expression. Biochem J 417:15–27

    Article  PubMed  CAS  Google Scholar 

  17. Lin S, Fu XD (2007) SR proteins and related factors in alternative splicing. Adv Exp Med Biol 623:107–122

    Article  PubMed  Google Scholar 

  18. Fu XD, Maniatis T (1990) Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature (Lond) 343:437–441

    Article  CAS  Google Scholar 

  19. Fu XD, Maniatis T (1992) The 35-kDa mammalian splicing factor SC35 mediates specific interactions between U1 and U2 small nuclear ribonucleoprotein particles at the 3’ splice site. Proc Natl Acad Sci USA 89:1725–1729

    Article  PubMed  CAS  Google Scholar 

  20. Stamm S (2008) Regulation of alternative splicing by reversible protein phosphorylation. J Biol Chem 283:1223–1227

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Masatoshi Hagiwara (Kyoto University) for collaboration and Ms. Maya Umekita (Institute of Microbial Chemistry) for technical assistance. We also thank Hafize Aysin Demirkol, Yutaro Kurogi, and other members of the Tani laboratory for their helpful discussions. This research was supported by grants from the Uehara Foundation, Japan, and Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tokio Tani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this paper

Cite this paper

Shigaki, K. et al. (2012). Visual Screening for the Natural Compounds That Affect the Formation of Nuclear Structures. In: Shibasaki, M., Iino, M., Osada, H. (eds) Chembiomolecular Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54038-0_18

Download citation

Publish with us

Policies and ethics