Skip to main content

Abstract

Depression is one of the most prevalent and costly brain diseases. Available antidepressant drugs are safe and effective, but less than half of all patients attain complete remission with single antidepressant and others exhibit partial, refractory or intolerant responses to treatment. Therefore, these findings emphasize the need to discover new antidepressants. The neurogenic hypothesis postulates that a reduced production of new neurons in the adult hippocampus is involved in pathogenesis of depression and an enhancement of hippocampal neurogenesis is one of mechanisms for the successful antidepressant treatment. This article examines this hypothesis with experimental and clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham I, Juhasz G, Kekesi KA et al (1998) Corticosterone peak is responsible for stress-induced elevation of glutamate in the hippocampus. Stress 2:171–181

    Article  PubMed  CAS  Google Scholar 

  • Airan RD, Meltzer LA, Roy M et al (2007) High-speed imaging reveals neurophysiological links to behavior in an animal model of depression. Science 317:819–823

    Article  PubMed  CAS  Google Scholar 

  • Ambrogini P, Orsini L, Mancini C et al (2002) Persistently high corticosterone levels but not normal circadian fluctuations of the hormone affect cell proliferation in the adult rat dentate gyrus. Neuroendocrinology 76:366–372

    Article  PubMed  CAS  Google Scholar 

  • Andrade L, Caraveo-Anduaga JJ, Berglund P et al (2003) The epidemiology of major depressive episodes: results from the International Consortium of Psychiatric Epidemiology (ICPE) Surveys. Int J Methods Psychiatr Res 12:3–21

    Article  PubMed  Google Scholar 

  • Banasr M, Hery M, Printemps R et al (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29:450–460

    Article  PubMed  CAS  Google Scholar 

  • Ben Menachem-Zidon O, Goshen I, Kreisel T et al (2008) Intrahippocampal transplantation of transgenic neural precursor cells overexpressing interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis. Neuropsychopharmacology 33:2251–2262

    Article  PubMed  CAS  Google Scholar 

  • Berton O, Nestler EJ (2006) New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev 7:137–151

    Article  CAS  Google Scholar 

  • Bessa JM, Ferreira D, Melo I et al (2008) The mood-improving actions of antidepressants do not depend on neurogenesis but are associated with neuronal remodeling. Mol Psychiatry 14:764–773

    Article  PubMed  Google Scholar 

  • Boku S, Nakagawa S, Masuda T et al (2009) Glucocorticoids and lithium reciprocally regulate the proliferation of adult dentate gyrus-derived neural precursor cells through GSK-3beta and beta-catenin/TCF pathway. Neuropsychopharmacology 34:805–815

    Article  PubMed  CAS  Google Scholar 

  • Bremner J, Narayan M, Anderson ER et al (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–118

    Article  PubMed  CAS  Google Scholar 

  • Cameron HA, Gould E (1994) Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 61:203–209

    Article  PubMed  CAS  Google Scholar 

  • Cameron HA, McEwen BS, Gould E (1995) Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J Neurosci 15:4687–4692

    PubMed  CAS  Google Scholar 

  • Cameron HA, Tanapat P, Gould E (1998) Adrenal steroids and N-methyl-D-aspartate receptor activation regulate neurogenesis in the dentate gyrus of adult rats through a common pathway. Neuroscience 82:349–354

    Article  PubMed  CAS  Google Scholar 

  • Campbell S, Mariott M, Nahmias C et al (2004) Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am J Psychiatry 161:598–607

    Article  PubMed  Google Scholar 

  • Cao L, Jiao X, Zuzga DS et al (2004) VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 36:827–835

    Article  PubMed  CAS  Google Scholar 

  • Carlenzon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    Article  Google Scholar 

  • Caspi A, Sugden K and Moffitt TE et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    Article  PubMed  CAS  Google Scholar 

  • Czéh B, Lucassen PJ (2007) What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur Arch Psychiatry Clin Neurosci 257:250–260

    Article  PubMed  Google Scholar 

  • Czéh B, Michaelis T, Watanabe T et al (2001) Stress-induced changes in cerebral metabolites, hippocampal volume, and cell proliferation are prevented by antidepressant treatment with tianeptine. Proc Natl Acad Sci USA 98:12796–12801

    Article  PubMed  Google Scholar 

  • Czéh B, Welt T, Fischer AK et al (2002) Chronic psychosocial stress and concomitant repetitive transcranial magnetic stimulation: effects on stress hormone levels and adult hippocampal neurogenesis. Biol Psychiatry 52:1057–1065

    Article  PubMed  Google Scholar 

  • David DJ, Samuels BA, Rainer Q et al (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479–493

    Article  PubMed  CAS  Google Scholar 

  • de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475

    Article  PubMed  Google Scholar 

  • Drevets W (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 11:240–249

    Article  PubMed  CAS  Google Scholar 

  • Duman RS (2004) Depression: a case of neuronal life and death? Biol Psychiatry 56:140–145

    Article  PubMed  Google Scholar 

  • Encinas JM, Vaahtokari A, Enikolopov G et al (2006) Fluoxetine targets early progenitor cells in the adult brain. Proc Natl Acad Sci USA 103:8233–8238

    Article  PubMed  CAS  Google Scholar 

  • Frodl T, Meisenzahl EM, Zetzsche T et al (2002) Hippocampal changes in patients with a first episode of major depression. Am J Psychiatry 159:1112–1118

    Article  PubMed  Google Scholar 

  • Fujioka T, Fujioka A, Duman RS (2004) Activation of cAMP signaling facilitates the morphological maturation of newborn neurons in adult hippocampus. J Neurosci 24:319–328

    Article  PubMed  CAS  Google Scholar 

  • Gold PW, Chrousos GP (2002) Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry 7:254–275

    Article  PubMed  CAS  Google Scholar 

  • Gould E, Cameron HA, Daniels DC et al (1992) Adrenal hormones suppress cell division in the adult rat dentate gyrus. J Neurosci 12:3642–3650

    PubMed  CAS  Google Scholar 

  • Gould E, McEwen BS, Tanapat P et al (1997) Neurogenesis in the dentate gyrus of the adult tree shrew is regulated by psychosocial stress and NMDA receptor activation. J Neurosci 17:2492–2498

    PubMed  CAS  Google Scholar 

  • Gould E, Tanapat P, McEwen BS (1998) Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci USA 95:3168–3171

    Article  PubMed  CAS  Google Scholar 

  • Hellsten J, Wennstrom M, Mohapel P et al (2002) Electroconvulsive seizures increase hippocampal neurogenesis after chronic corticosterone treatment. Eur J Neurosci 16:283–290

    Article  PubMed  Google Scholar 

  • Heninger GR, Delgado PL, Charney DS (1996) The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 29:2–11

    Article  PubMed  CAS  Google Scholar 

  • Jayatissa MN, Bisgaard C, Tingstrom A et al (2006) Hippocampal cytogenesis correlates to escitalopram-mediated recovery in a chronic mild stress rat model of depression. Neuropsychopharmacology 31:2395–2404

    Article  PubMed  CAS  Google Scholar 

  • Jeon SH, Chae BC, Kim HA et al (2007) The PKA/CREB pathway is closely involved in VEGF expression in mouse macrophages. Mol Cells 23:23–29

    PubMed  CAS  Google Scholar 

  • Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 156:837–841

    PubMed  CAS  Google Scholar 

  • Knol MJ, Twisk JW, Beekman AT et al (2006) Depression as a risk factor for the onset of type 2 diabetes mellitus. A meta-analysis. Diabetologia 49:837–845

    Article  PubMed  CAS  Google Scholar 

  • Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA 105:751–756

    Article  PubMed  CAS  Google Scholar 

  • Koolschijn PC, van Haren NE, Lensvelt-Mulders GJ et al (2009) Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp 30:3719–3735

    Article  PubMed  Google Scholar 

  • Leuner B, Gould E, Shors TJ (2006) Is there a link between adult neurogenesis and learning? Hippocampus 16:216–224

    Article  PubMed  Google Scholar 

  • Lopez AD, Mathers CD, Ezzati M et al (2006) Global and regional burden of disease and risk factors (2001) systematic analysis of population health data. Lancet 367:1747–1757

    Article  PubMed  Google Scholar 

  • Lucassen PJ, Muller MB, Holsboer F (2001) Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol 158:453–468

    Article  PubMed  CAS  Google Scholar 

  • MacQueen G, Campbell S, McEwen BS et al (2003) Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 100:1387

    Article  PubMed  CAS  Google Scholar 

  • Madsen TM, Treschow A, Bengzon J et al (2000) Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 47:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Malberg JE, Duman RS (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28:1562–1571

    Article  PubMed  CAS  Google Scholar 

  • Malberg J, Eisch AJ, Nestler EJ et al (2000) Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20:9104–9110

    PubMed  CAS  Google Scholar 

  • Manev H, Uz T, Smalheiser NR et al (2001) Antidepressants alter cell proliferation in the adult brain in vivo and in neural cultures in vitro. Eur J Pharmacol 411:67–70

    Article  PubMed  CAS  Google Scholar 

  • Manganas LN, Zhang X, Li Y et al (2007) Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 318:980–985

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (2000) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886:172–189

    Article  PubMed  CAS  Google Scholar 

  • McKinnon MC, Yucel K, Nazarov A et al (2009) A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J Psychiatry Neurosci 34:41–54

    PubMed  Google Scholar 

  • Mervaala E, Fohr J, Kononen M et al (2000) Quantitative MRI of the hippocampus and amygdala in severe depression. Psychol Med 30:117–125

    Article  PubMed  CAS  Google Scholar 

  • Mirescue C, Gould E (2006) Stress and adult neurogenesis. Hippocampus 16:233–238

    Article  Google Scholar 

  • Morilak DA, Frazer A (2004) Antidepressants and brain monoaminergic systems: a dimensional approach to understanding their behavioural effects in depression and anxiety disorders. Int J Neuropsychopharmacol 7:193–218

    Article  PubMed  CAS  Google Scholar 

  • Muller MB, Lucassen PJ, Yassouridis A et al (2001) Neither major depression nor glucocorticoid treatment affects the cellular integrity of the human hippocampus. Eur J Neurosci 14:1603–1612

    Article  PubMed  CAS  Google Scholar 

  • Murray F, Smith DW, Huston PH (2008) Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. Eur J Neurosci 583:115–127

    CAS  Google Scholar 

  • Nakagawa S, Kim JE, Lee R et al (2002) Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci 22:3673–3682

    PubMed  CAS  Google Scholar 

  • Perera T, Coplan JD, Lisanby SH et al (2007) Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. J Neurosci 27:4894–4901

    Article  PubMed  CAS  Google Scholar 

  • Pham K, Nacher J, Hof PR et al (2003) Repeated restraint stress suppresses neurogenesis and induces biphasic PSA-NCAM expression in the adult rat dentate gyrus. Eur J Neurosci 17:879–886

    Article  PubMed  Google Scholar 

  • Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33:88–109

    Article  PubMed  CAS  Google Scholar 

  • Radley JJ, Jacobs BL (2002) 5-HT1A receptor antagonist administration decreases cell proliferation in the dentate gyrus. Brain Res 955:264–267

    Article  PubMed  CAS  Google Scholar 

  • Reif A, Fritzen S, Finger M et al (2006) Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry 11:514–522

    Article  PubMed  CAS  Google Scholar 

  • Rosenbrock H, Koros E, Bloching A et al (2005) Effect of chronic intermittent restraint stress on hippocampal expression of marker proteins for synaptic plasticity and progenitor cell proliferation in rats. Brain Res 1040:55–63

    Article  PubMed  CAS  Google Scholar 

  • Saarelainen T, Hendolin P, Lucas G et al (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 23:349–357

    PubMed  CAS  Google Scholar 

  • Sairanen M, Lucas G, Ernfors P et al (2005) Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 25:1089–1094

    Article  PubMed  CAS  Google Scholar 

  • Santarelli L, Saxe M, Gross C et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57:925–935

    Article  PubMed  CAS  Google Scholar 

  • Saxe MD, Battaglia F, Wang JW et al (2006) Ablation of hippocampal neurogenesis impairs contextual fear conditioning and synaptic plasticity in the dentate gyrus. Proc Natl Acad Sci USA 103:17501–17506

    Article  PubMed  CAS  Google Scholar 

  • Scott BW, Wojtowicz JM, Burnham WM (2000) Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures. Exp Neurol 165:231–236

    Article  PubMed  CAS  Google Scholar 

  • Shah P, Ebmeier KP, Glabus MF et al (1998) Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression. Controlled magnetic resonance imaging study. Br J Psychiatry 172:527–532

    CAS  Google Scholar 

  • Sheline Y, Wany P, Gado MH et al (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 93:3908–3913

    Article  PubMed  CAS  Google Scholar 

  • Sheline Y, Sanghavi M, Mintun MA et al (1999) Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 19:5034–5043

    PubMed  CAS  Google Scholar 

  • Sheline Y, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160:1516–1518

    Article  PubMed  Google Scholar 

  • Singer BH, Jutkiewicz EM, Fuller CL et al (2009) Conditional ablation and recovery of forebrain neurogenesis in the mouse. J Comp Neurol 20:567–582

    Article  Google Scholar 

  • Steffens D, Byrum CE, McQuoid DR et al (2000) Hippocampal volume in geriatric depression. Biol Psychiatry 48:301–309

    Article  PubMed  CAS  Google Scholar 

  • Stockmeier CA, Mahajan GJ, Konick LC et al (2004) Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 56:640–650

    Article  PubMed  Google Scholar 

  • Tanapat P, Hasting NB, Rydel TA et al (2001) Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J Comp Neurol 437:496–504

    Article  PubMed  CAS  Google Scholar 

  • van der Hart M, Czeh B, de Biurrun G et al (2002) Substance P receptor antagonist and clomipramine prevent stress-induced alterations in cerebral metabolites, cytogenesis in the dentate gyrus and hippocampal volume. Mol Psychiatry 7:933–941

    Article  PubMed  Google Scholar 

  • Vermetten E, Vythilingam M, Southwick SM et al (2003) Long-term treatment with paroxetine increases verbal declarative memory and hippocampal volume in posttraumatic stress disorder. Biol Psychiatry 54:693–702

    Article  PubMed  CAS  Google Scholar 

  • Videbech P, Ravnkide B (2004) Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 161:1957–1966

    Article  PubMed  Google Scholar 

  • Wang JW, David DJ, Monckton JE et al (2008) Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci 28:1374–1384

    Article  PubMed  CAS  Google Scholar 

  • Warner-Schmidt JL, Duman RS (2007) VEGF is an essential mediator of the neurogenic and behavioral actions of antidepressants. Proc Natl Acad Sci USA 104:4647

    Article  PubMed  CAS  Google Scholar 

  • Willner P (1990) Animal models of depression: an overview. Pharmacol Ther 45:425–455

    Article  PubMed  CAS  Google Scholar 

  • Wong EY, Herbert J (2004) The corticoid environment: a determining factor for neural progenitors’ survival in the adult hippocampus. Eur J Neurosci 20:2491–2498

    Article  PubMed  Google Scholar 

  • Wong EY, Herbert J (2005) Roles of mineralocorticoid and glucocorticoid receptors in the regulation of progenitor proliferation in the adult hippocampus. Eur J Neurosci 22:785–792

    Article  PubMed  Google Scholar 

  • Wong EY, Herbert J (2006) Raised circulating corticosterone inhibits neuronal differentiation of progenitor cells in the adult hippocampus. Neuroscience 137:83–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grant-in-aid No. 18591269 for Scientific Research from the Ministry of Education, Science and Culture, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Nakagawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer

About this chapter

Cite this chapter

Nakagawa, S., Duman, R.S. (2011). Depression. In: Seki, T., Sawamoto, K., Parent, J.M., Alvarez-Buylla, A. (eds) Neurogenesis in the Adult Brain II. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53945-2_5

Download citation

Publish with us

Policies and ethics