Skip to main content

AD-FTLD Spectrum: New Understanding of the Neurodegenerative Process from the Study of Risk Genes

  • Chapter
Book cover Neuropsychiatric Disorders

Abstract

Typical cases of primary neurodegenerative diseases causing dementia, such as Alzheimer’s disease (AD), diffuse Lewy body disease, frontotemporal lobar degeneration (FTLD), and corticobasal degeneration, show characteristic clinical signs and symptoms, but there are some cases in which the differential diagnosis among neurodegenerative dementias is difficult because of their atypical clinical presentation. Considering recent findings in molecular genetics of ­familial cases of AD and FTLD, the relationship between causative genes and clinical signs is becoming more complicated, and the concept of an AD-FTLD spectrum is proposed. Protein fragments derived from amyloid precursor proteins, tau and TDP-43, are deposited in the cerebral tissue of patients with AD and FLTD in different degrees. In familial cases, these deposited protein fragments are caused by mutations in the precursor protein genes. The majority of cases of AD and FTLD are sporadic, wherein loss of function of presenilin and progranulin increases the risk of these neurodegenerative disorders. Under the concept of AD-FTLD, it is more helpful to elucidate the common neurodegenerative pathway in which aggregated protein fragments are deposited after partial proteolysis, phosphorylation, and ubiquitination, leading to the formation of amyloid angiopathy, senile plaque, ­neurofibrillary tangles, and the inclusion body of FTLD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferri CP, Prince M, Brayne C et al (2005) Global prevalence of dementia: a Delphi consensus study. Lancet 366:2112–2117

    Article  PubMed  Google Scholar 

  2. Breteler MM, Claus JJ, van Duijn CM et al (1992) Epidemiology of Alzheimer’s disease. Epidemiol Rev 14:59–82

    PubMed  CAS  Google Scholar 

  3. Graff-Radford NR, Woodruff BK (2007) Frontotemporal dementia. Semin Neurol 27:48–57

    Article  PubMed  Google Scholar 

  4. Neary D, Snowden JS, Gustafson L et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51(6):1546­–1554

    Article  PubMed  Google Scholar 

  5. Goate A, Chartier-Harlin MC, Mullan M et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature (Lond) 349:704–706

    Article  CAS  Google Scholar 

  6. Sherrington R, Rogaev EI, Liang Y et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature (Lond) 375:754–760

    Article  CAS  Google Scholar 

  7. Levy-Lahad E, Wasco W, Poorkaj P et al (1995) Candidate gene for the chromosome 1 ­familial Alzheimer’s disease locus. Science 269:973–977

    Article  PubMed  CAS  Google Scholar 

  8. Hardy J (1997) Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci 20:154–159

    Article  PubMed  CAS  Google Scholar 

  9. De Strooper B (2003) Aph-1, Pen-2, and nicastrin with presenilin generate an active ­gamma-secretase complex. Neuron 38:9–12

    Article  PubMed  Google Scholar 

  10. Bird TD (2008) Genetic aspects of Alzheimer disease. Genet Med 10:231–239

    Article  PubMed  CAS  Google Scholar 

  11. Strittmatter WJ, Saunders AM, Schmechel D et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981

    Article  PubMed  CAS  Google Scholar 

  12. Farrer LA, Cupples LA, Haines JL et al (1997) Effects of age, sex, and ethnicity on the ­association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOε and Alzheimer disease meta analysis consortium. JAMA 278:1349–1356

    Article  PubMed  CAS  Google Scholar 

  13. Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923

    Article  PubMed  CAS  Google Scholar 

  14. Mahley RW, Weisgraber KH, Huang Y (2006) Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc Natl Acad Sci USA 103:5644–5651

    Article  PubMed  CAS  Google Scholar 

  15. Drzezga A, Grimmer T, Henriksen G et al (2009) Effect of APOε genotype on amyloid plaque load and gray matter volume in Alzheimer disease. Neurology 72:1487–1494

    Article  PubMed  CAS  Google Scholar 

  16. Reiman EM, Chen K, Liu X et al (2009) Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proc Natl Acad Sci USA 106:6820–6825

    Article  PubMed  CAS  Google Scholar 

  17. Rademakers R, Hutton M (2007) The genetics of frontotemporal lobar degeneration. Curr Neurol Neurosci Rep 7:434–442

    Article  PubMed  CAS  Google Scholar 

  18. Hutton M, Lendon CL, Rizzu P et al (1998) Association of missense and 5′-splice-site ­mutations in tau with the inherited dementia FTDP-17. Nature (Lond) 393:702–705

    Article  CAS  Google Scholar 

  19. Watts GD, Wymer J, Kovach MJ et al (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36:377–381

    Article  PubMed  CAS  Google Scholar 

  20. Skibinski G, Parkinson NJ, Brown JM et al (2005) Mutations in the endosomal ESCRTIII complex subunit CHMP2B in frontotemporal dementia. Nat Genet 37:806–808

    Article  PubMed  CAS  Google Scholar 

  21. Baker M, MacKenzie IR, Pickering-Brown SM et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature (Lond) 442:916–919

    Article  CAS  Google Scholar 

  22. Cruts M, Gijselinck I, van der Zee J et al (2006) Null mutations in progranulin cause ­ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature (Lond) 442:920–924

    Article  CAS  Google Scholar 

  23. He Z, Bateman A (2003) Progranulin (granulin–epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med 81:600–612

    Article  PubMed  CAS  Google Scholar 

  24. He Z, Ong CH, Halper J et al (2003) Progranulin is a mediator of the wound response. Nat Med 9:225–229

    Article  PubMed  CAS  Google Scholar 

  25. Van Damme P, Van Hoecke A, Lambrechts D et al (2008) Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J Cell Biol 181:37–41

    Article  PubMed  Google Scholar 

  26. Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133

    Article  PubMed  CAS  Google Scholar 

  27. Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878

    Article  PubMed  CAS  Google Scholar 

  28. Gregory RI, Yan KP, Amuthan G et al (2004) The microprocessor complex mediates the genesis of microRNAs. Nature (Lond) 432:235–240

    Article  CAS  Google Scholar 

  29. Amador-Ortiz C, Lin WL, Ahmed Z et al (2007) TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol 61:435–445

    Article  PubMed  CAS  Google Scholar 

  30. Higashi S, Iseki E, Yamamoto R et al (2007) Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer’s disease and dementia with Lewy bodies. Brain Res 1184:284–294

    Article  PubMed  CAS  Google Scholar 

  31. Nakashima-Yasuda H, Uryu K, Robinson J et al (2007) Co-morbidity of TDP-43 ­proteinopathy in Lewy body related diseases. Acta Neuropathol 114:221–229

    Article  PubMed  CAS  Google Scholar 

  32. Kabashi E, Valdmanis PN, Dion P et al (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574

    Article  PubMed  CAS  Google Scholar 

  33. Sreedharan J, Blair IP, Tripathi VB et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672

    Article  PubMed  CAS  Google Scholar 

  34. Morita M, Al-Chalabi A, Andersen PM et al (2006) A locus on chromosome 9p confers susceptibility to ALS and frontotemporal dementia. Neurology 66:839–844

    Article  PubMed  CAS  Google Scholar 

  35. Vance C, Al-Chalabi A, Ruddy D et al (2006) Familial amyotrophic lateral sclerosis with frontotemporal dementia is linked to a locus on chromosome 9p13.2–21.3. Brain 129:868–876

    Article  PubMed  Google Scholar 

  36. Rovelet-Lecrux A, Hannequin D, Raux G et al (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38:24–26

    Article  PubMed  CAS  Google Scholar 

  37. Sleegers K, Brouwers N, Gijselinck I et al (2006) APP duplication is sufficient to cause early onset Alzheimer’s dementia with cerebral amyloid angiopathy. Brain 129:2977–2983

    Article  PubMed  Google Scholar 

  38. Wisniewski KE, Dalton AJ, McLachlan C et al (1985) Alzheimer’s disease in Down’s syndrome: clinicopathologic studies. Neurology 35:957–961

    Article  PubMed  CAS  Google Scholar 

  39. Singleton AB, Farrer M, Johnson J et al (2003) Alpha-synuclein locus triplication causes Parkinson’s disease. Science 302:841

    Article  PubMed  CAS  Google Scholar 

  40. Chartier-Harlin MC, Kachrgus J, Roumier C et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364:1167–1169

    Article  PubMed  CAS  Google Scholar 

  41. Brouwers N, Sleegers K, Engelborghs S et al (2006) Genetic risk and transcriptional variability of amyloid precursor protein in Alzheimer’s disease. Brain 129:2984–2991

    Article  PubMed  Google Scholar 

  42. Theuns J, Brouwers N, Engelborghs S et al (2006) Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am J Hum Genet 78:936–946

    Article  PubMed  CAS  Google Scholar 

  43. Crook R, Verkkoniemi A, Perez-Tur J et al (1998) A variant of Alzheimer’s disease with spastic paraparesis and unusual plaques due to deletion of exon 9 of presenilin 1. Nat Med 4:452–455

    Article  PubMed  CAS  Google Scholar 

  44. Rovelet-Lecrux A, Deramecourt V, Legallic S et al (2008) Deletion of the progranulin gene in patients with frontotemporal lobar degeneration or Parkinson disease. Neurobiol Dis 31:41–45

    Article  PubMed  CAS  Google Scholar 

  45. Rovelet-Lecrux A (2009) Partial deletion of the MAPT gene: a novel mechanism of FTDP-17. Hum Mutat 30:E591–E602

    Article  PubMed  Google Scholar 

  46. Wang WX, Rajeev BW, Stromberg AJ et al (2008) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28:1213–1223

    Article  PubMed  Google Scholar 

  47. Lukiw WJ, Zhao Y, Cui JG (2008) An NF-kB-sensitive micro RNA-146amediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem 283:31315–31322

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatoshi Takeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer

About this chapter

Cite this chapter

Takeda, M. et al. (2010). AD-FTLD Spectrum: New Understanding of the Neurodegenerative Process from the Study of Risk Genes. In: Miyoshi, K., Morimura, Y., Maeda, K. (eds) Neuropsychiatric Disorders. Springer, Tokyo. https://doi.org/10.1007/978-4-431-53871-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-53871-4_17

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-53870-7

  • Online ISBN: 978-4-431-53871-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics