Skip to main content

Cooperativity in the Regulation of Force and the Kinetics of Force Development in Heart and Skeletal Muscles

Cross-bridge activation of force

  • Conference paper
Regulatory Mechanisms of Striated Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 592))

Abstract

Twitches are the unitary contractile events in both heart and skeletal muscles, but twitch plasticity in terms of force and the kinetics of force development differs considerably in the two muscle types. In skeletal muscle, twitch contractions are relatively invariant as long as temperature is constant and the muscle is well rested. In contrast, twitches in heart muscle exhibit much greater dynamic range, such that both force and the kinetics of force development can vary tremendously on a beat-to-beat basis. These differences are in part due to muscle-specific differences in the delivery of Ca2+ to the myoplasm during excitation-contraction coupling. In skeletal muscle, a single action potential elicits a transient increase in intracellular Ca2+ sufficient to saturate thin filament regulatory sites on troponin-C. Because of this, force development and the ability to do work depend upon the duration of the Ca2+ transient and therefore the time available for cross-bridge binding to actin, which in skeletal muscles can be prolonged by tetanic stimulation. In heart muscle, the increase in intracellular Ca2+ during a twitch is typically insufficient to saturate thin filament sites, so that twitch force and work production are sub-maximal. In contrast to skeletal muscle, cardiac muscle cannot be tetanized under physiological conditions, but twitch force and power can be varied by regulating the delivery of Ca2+ to the myoplasm and also by agonist-induced regulation of cross-bridge cycling kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

16.8. References

  1. S. Schiaffino, and C. Reggiani, Molecular diversity of myofibrillar proteins: gene regulation and functional significance, Physiol. Rev. 76(2), 371–423 (1996).

    PubMed  CAS  Google Scholar 

  2. A. M. Gordon, E. Homsher, and M. Regnier, Regulation of contraction in striated muscle, Physiol. Rev. 80(2), 853–924 (2000).

    PubMed  CAS  Google Scholar 

  3. S. S. Lehrer, The regulatory switch of the muscle thin filament: Ca2+ or myosin heads, J. Muscle Res. Cell Motil. 15(3), 232–236 (1994).

    Article  PubMed  CAS  Google Scholar 

  4. R. J. Solaro, and H. M. Rarick, Troponin and tropomyosin: proteins that switch on and tune in the activity of cardiac myofilaments, Circ. Res. 83(5), 471–480 (1998).

    PubMed  CAS  Google Scholar 

  5. R. L. Moss, M. Razumova, and D. P. Fitzsimons, Myosin cross-bridge activation of cardiac thin filaments: implications for myocardial function in health and disease, Circ. Res. 94(10), 1290–1300 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. S. Ebashi, and M. Endo, Calcium ion and muscle contraction, Prog. Biophys. Mol. Biol. 18, 123–183 (1968).

    Article  PubMed  CAS  Google Scholar 

  7. L. S. Tobacman, Thin filament-mediated regulation of cardiac contraction, Ann. Rev. Physiol. 58, 447–481 (1996).

    Article  CAS  Google Scholar 

  8. J. S. Shiner, and R. J. Solaro, The Hill coefficient for the Ca2+-activation of striated muscle contraction, Biophys. J. 46(3), 541–543 (1984).

    PubMed  CAS  Google Scholar 

  9. Z. Grabarek, J. Grabarek, P. C. Leavis, and J. Gergely, Cooperative binding to the Ca2+ specific sites of troponin C in regulated actin and actomyosin, J. Biol. Chem. 258(23), 14098–14102 (1983).

    PubMed  CAS  Google Scholar 

  10. K. Guth, and J. D. Potter, Effect of rigor and cycling cross-bridges on the structure of troponin C and on the Ca2+ affinity of the Ca2+ specific regulatory sites in skinned rabbit psoas fibers, J. Biol. Chem. 262(28), 13627–13635 (1987).

    PubMed  CAS  Google Scholar 

  11. R. D. Bremel, and A. Weber, Cooperation within actin filament in vertebrate skeletal muscle, Nature 238(5359), 97–101 (1972).

    CAS  Google Scholar 

  12. Z. Lu, R. L. Moss, and J. W. Walker, Tension transients initiated by photogeneration of MgADP in skinned skeletal muscle fibers, J. Gen. Physiol. 101(6), 867–888 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. Z. Lu, D. R. Swartz, J. M. Metzger, R. L. Moss, and J. W. Walker, Regulation of force development studied by photolysis of caged ADP in rabbit skinned psoas fibers, Biophys. J. 81(1), 334–344 (2001).

    PubMed  CAS  Google Scholar 

  14. H. Thirlwell, J. E. T. Corrie, G. P. Reid, D. R. Trentham, and M. A. Ferenczi, Kinetics of relaxation from rigor of permeabilized fast-twitch skeletal fibers from rabbit using a novel caged ATP and apyrase, Biophys. J. 67(6), 2346–2447 (1994).

    Google Scholar 

  15. J. A. Dantzig, M. G. Hibberd, D. R. Trentham, and Y. E. Goldman, Cross-bridge kinetics in the presence of MgADP investigated by photolysis of caged ATP in rabbit psoas muscle fibers, J. Physiol. 432(1), 639–680 (1991).

    PubMed  CAS  Google Scholar 

  16. J. A. Dantzig, Y. E. Goldman, N. C. Millar, J. Lacktis, and E. Homsher, Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres, J. Physiol. 451(1), 247–278 (1992).

    PubMed  CAS  Google Scholar 

  17. J. W. Walker, Z. Lu, and R. L. Moss. Effects of Ca2+ on the kinetics of phosphate release in skeletal muscle, J. Biol. Chem. 267(4), 2459–2466 (1992).

    PubMed  CAS  Google Scholar 

  18. D. R. Swartz, and R. L. Moss, Influence of a strong-binding myosin analogue on calcium-sensitive mechanical properties of skinned skeletal muscle fibers, J. Biol. Chem. 267(28), 20497–20506 (1992).

    PubMed  CAS  Google Scholar 

  19. H. Nagashima, and S. Asakura, Studies on cooperative properties of tropomyosin-actin and tropomyosin-troponin-actin comples by the use of N-ethylmaleimide-treated and untreated species of myosin subfragment 1, J. Mol. Biol. 155(4), 409–428 (1982).

    Article  PubMed  CAS  Google Scholar 

  20. D. L. Williams, L. E. Greene, and E. Eisenberg, Cooperative turning on of myosin subfragment 1 adenosinetriphosphatase activity by the troponin-tropomyosin-actin complex, Biochemistry 27(18), 6987–6993 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. D. P. Fitzsimons, J. R. Patel, K. S. Campbell, and R. L. Moss, Cooperative mechanisms in the activation dependence of the rate of force development in rabbit skinned skeletal muscle fibers, J. Gen. Physiol. 117(2), 133–148 (2001).

    Article  PubMed  CAS  Google Scholar 

  22. P. A. Hofmann, and F. Fuchs, Effect of length and cross-bridge attachment on Ca2+ binding to troponin C, Am. J. Physiol. 253(1), C90–C96 (1987).

    PubMed  CAS  Google Scholar 

  23. F. Fuchs, and Y.-P. Wang, Force, length, and Ca2+-troponin C affinity in skeletal muscle, Am. J. Physiol. 261(5), C787–C792 (1991).

    PubMed  CAS  Google Scholar 

  24. F. Fuchs, Mechanical modulation of the Ca2+ regulatory protein complex in cardiac muscle, NIPS 10, 6–12 (1995).

    CAS  Google Scholar 

  25. D. F. A. McKillop, and M. A. Geeves, Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament, Biophys. J. 65(2), 693–701 (1993).

    PubMed  CAS  Google Scholar 

  26. K. Campbell, Rate constant of muscle force redevelopment reflects cooperative activation as well as crossbridge kinetics, Biophys. J. 72(1), 254–262 (1997).

    PubMed  CAS  Google Scholar 

  27. C. A. Butters, J. B. Tobacman, and L. S. Tobacman, Cooperative effect of calcium binding to adjacent troponin molecules on the thin filament-myosin subfragment 1 MgATPase rate, J. Biol. Chem. 272(20), 13196–13202 (1997).

    Article  PubMed  CAS  Google Scholar 

  28. S. S. Lehrer, and M. A. Geeves, The muscle thin filament as a classical cooperative/allosteric regulatory System, J. Mol. Biol. 277(5), 1081–1089 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. D. P. Fitzsimons, J. R. Patel, and R. L. Moss, Cross-bridge interaction kinetics in rat myocardium are accelerated by strong binding of myosin to the thin filament, J. Physiol. 530(2), 263–272 (2001).

    Article  PubMed  CAS  Google Scholar 

  30. B. Brenner, and E. Eisenberg, Rate of force generation in muscle: correlation with actomyosin ATPase activity in solution, Proc. Natl. Acad. Sci. USA 83(10), 3542–3546 (1986).

    Article  PubMed  CAS  Google Scholar 

  31. B. Brenner, Effect of Ca2+ on cross-bridge turnover kinetics in skinned single rabbit psoas fibers: implications for regulation of muscle contraction, Proc. Natl. Acad. Sci. USA 85(9), 3265–3269 (1988).

    Article  PubMed  CAS  Google Scholar 

  32. A. Landesberg, and S. Sideman, Coupling calcium binding to troponin C and cross-bridge cycling in skinned cardiac cells, Am. J. Physiol. 266(3), H1260–H1271 (1994).

    PubMed  CAS  Google Scholar 

  33. J. A. Dantzig, and Y. E. Goldman, Suppression of muscle contraction by vanadate, J. Gen. Physiol. 86(3), 305–327 (1985).

    Article  PubMed  CAS  Google Scholar 

  34. M. V. Razumova, A. E. Bukatina, and K. B. Campbell, Different myofilament nearest-neighbor interactions have distinctive effects on contractile behavior, Biophys. J. 78(6), 3120–3137 (2000).

    PubMed  CAS  Google Scholar 

  35. K. Campbell, M. Chandra, R. D. Kirkpatrick, B. K. Slinker, and W. C. Hunter, Interpreting cardiac muscle force-length dynamics using a novel functional tool, Am. J. Physiol. 286(4), H1535–H1545 (2004).

    CAS  Google Scholar 

  36. M. Regnier, D. A. Martyn, and P. B. Chase, Calcium regulation of tension redevelopment kinetics with 2-deoxy-ATP or low [ATP] in skinned rabbit psoas fibers, Biophys. J. 74(4), 2005–2015 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. P. W. Brandt, M. S. Diamond, and F. H. Schachat, The thin filament of vertebrate skeletal muscle cooperatively activates as a unit, J. Mol. Biol. 180(2), 379–384 (1984).

    Article  PubMed  CAS  Google Scholar 

  38. R. L. Moss, G. G. Giulian, and M. L. Greaser, The effects of partial extraction of TnC upon the tension-pCa relationship in rabbit skinned skeletal muscle fibers, J. Gen. Physiol. 86(4), 585–600 (1985).

    Article  PubMed  CAS  Google Scholar 

  39. M. R. Wolff, K. S. McDonald, and R. L. Moss, Rate of tension development in cardiac muscle varies with level of activator calcium, Circ. Res. 76(1), 154–160 (1995).

    PubMed  CAS  Google Scholar 

  40. S. Palmer, and J. C. Kentish, Roles of Ca2+ and crossbridge kinetics in determining the maximum rates of Ca2+ activation and relaxation in rat and guinea pig skinned trabeculae, Circ. Res. 83(2), 179–186 (1998).

    PubMed  CAS  Google Scholar 

  41. M. Regnier, H. Martin, R. J. Barsotti, A. J. Rivera, D. A. Martyn, and E. Clemmens, Cross-bridge versus thin filament contributions to the level and rate of force redevelopment in cardiac muscle, Biophys. J. 87(2), 1815–1824 (2004).

    Article  PubMed  CAS  Google Scholar 

  42. D. R. Manning, and J. T. Stull, Myosin light chain phosphorylation-dephosphorylation in mammalian skeletal muscle, Am. J. Physiol. 242(3), C234–C241 (1982).

    PubMed  CAS  Google Scholar 

  43. W. G. Pyle, and R. J. Solaro, At the cross-roads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function, Circ. Res. 94(3), 296–305 (2004).

    Article  PubMed  CAS  Google Scholar 

  44. S. Miyata, W. Minobe, M. R. Bristow, and L. A. Leinwand, Myosin heavy chain isoform expression in the failing and nonfailing human heart, Circ. Res. 86(4), 386–390 (2000).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Fitzsimons, D.P., Moss, R.L. (2007). Cooperativity in the Regulation of Force and the Kinetics of Force Development in Heart and Skeletal Muscles. In: Ebashi, S., Ohtsuki, I. (eds) Regulatory Mechanisms of Striated Muscle Contraction. Advances in Experimental Medicine and Biology, vol 592. Springer, Tokyo. https://doi.org/10.1007/978-4-431-38453-3_16

Download citation

Publish with us

Policies and ethics