Skip to main content

Structural and Functional Analysis of Troponins from Scallop Striated and Human Cardiac Muscles

  • Conference paper
Regulatory Mechanisms of Striated Muscle Contraction

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 592))

Abstract

The Ca2+-regulation of scallop striated muscle contraction, a Ca2+-regulation mechanism that is linked to myosin, was first discovered by A. G. Szent-Györgyi and his colleagues. 1,2 In myosin-linked Ca2+-regulation, the Ca2+ -receptive site is the essential light chain of myosin, and the ATPase of the scallop myofibrils has been found to be desensitized to Ca2+ by removal of the regulatory light chain (RLC) of myosin in response to treatment with a divalent cation chelator (EDTA). At the same time, three components of troponin and tropomyosin have also been isolated from scallop striated muscle, and several of their biochemical properties have been investigated.35 In this troponin-linked Ca2+-regulation, the concurrent presence of all three components of troponin (troponins C, I, and T; TnC, TnI, and TnT) and tropomyosin are necessary for the regulation of actomyosin ATPase activity.610 The action of Ca2+ on TnC ultimately induces actomyosin ATPase activity. Troponin-linked Ca2+ -regulation is also desensitized by the removal of TnC in response to treatment with divalent cation chelators such as EDTA or CDTA. The mutual relation of these two types of Ca2+-regulations in scallop myofibrils was then investigated as follows.11 Desensitized scallop myofibrils were prepared by removing both RLC and TnC by treatment with a divalent cation chelator, CDTA, and the effects of reconstitution with RLC and/or TnC on the ATPase activity of the desensitized myofibrils were examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

15.5. References

  1. A. G. Szent-Györgyi, E. M. Szentkiralyi, and J. Kendrick-Jonas, The light chains of scallop myosin as regulatory subunits, J. Mol. Biol. 74, 179–203 (1973).

    Article  PubMed  Google Scholar 

  2. A. G. Szent-Györgyi, V. N. Kalabokis, and C. L. Perreault-Micale, Regulation by molluscan myosins. Mol. Cell. Biochem. 190, 55–62 (1999).

    Article  PubMed  Google Scholar 

  3. T. Ojima, and K. Nishita, Isolation of troponins from striated and smooth adductor muscles of Akazara scallop. J. Biochem. 100, 821–824 (1986).

    PubMed  CAS  Google Scholar 

  4. T. Ojima, and K. Nishita, Troponin from Akazara scallop striated adductor muscles. J. Biol. Chem. 261, 16749–16754 (1986).

    PubMed  CAS  Google Scholar 

  5. K. Nishita, H. Tanaka, and T. Ojima, T. Amino acid sequence of troponin C from scallop striated adductor muscle. J. Biol. Chem. 269, 3464–3468 (1994).

    PubMed  CAS  Google Scholar 

  6. S. Ebashi, and M. Endo, Calcium ion and muscle contraction. Prog. Biophys. Mol. Biol. 18, 123–183 (1968).

    Article  PubMed  CAS  Google Scholar 

  7. I. Ohtsuki, K. Maruyama, and S. Ebashi, Regulatory and cytoskeletal proteins of vertebrate skeletal muscle, Adv. Protein Chem. 38, 1–67 (1986).

    PubMed  CAS  Google Scholar 

  8. C. S. Farah, and F. C. Reinach, The troponin complex and regulation of muscle contraction. FASEB, J. 9, 755–767 (1995).

    CAS  Google Scholar 

  9. L. S. Tobacman, Thin filament-mediated regulation of cardiac contraction. Ann. Rev. Physiol. 58, 447–481 (1996).

    Article  CAS  Google Scholar 

  10. T. Kobayashi, and R. J. Solaro, Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu. Rev. Physiol. 67, 39–67 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. F. Shiraishi, S. Morimoto, K. Nishita, T. Ojima, and I. Ohtsuki, Effects of removal and reconstitution of myosin regulatory light chain and troponin C on the Ca2+-sensitive ATPase activity of myofibrils from scallop striated muscle. J. Biochem. 126, 1020–1024 (1999).

    PubMed  CAS  Google Scholar 

  12. A. S. Zot, J. D. Potter, and W. L. Strauss, Isolation and sequence of a cDNA clone for rabbit fast skeletal muscle troponin C. Homology with calmodulin and parvalbumin. J. Biol. Chem. 262, 15418–15421 (1987).

    PubMed  CAS  Google Scholar 

  13. T. Ojima, N. Koizumi, K. Ueyama, A. Inoue, and K. Nishita, Functional role of Ca2+-binding site IV of scallop troponin C. J. Biochem. 128, 803–809 (2000).

    PubMed  CAS  Google Scholar 

  14. T. Doi, A. Satoh, H. Tanaka, A. Inoue, F. Yumoto, M. Tanokura, I. Ohtsuki, K. Nishita, and T. Ojima, Functional importance of Ca2+-deficient N-terminal lobe of molluscan troponin C in troponin regulation. Arch. Biochem. Biophys. 436, 83–90 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. J. M. Wilkinson, and R. J. Grand, The amino-acid sequence of chicken fast-skeletal-muscle troponin I. Eur. J. Biochem. 82, 493–501 (1978).

    Article  PubMed  CAS  Google Scholar 

  16. T. Ojima, and K. Nishita, Biochemical characteristics of the Mr 52 000 component of Akazara scallop troponin. J. Biochem. 104, 207–210 (1988).

    PubMed  CAS  Google Scholar 

  17. T. Ojima, H. Tanaka, and K. Nishita, Cyanogen bromide fragments of Akazara scallop Mr 52 000 troponin-I. J. Biochem. 108, 519–521 (1990).

    PubMed  CAS  Google Scholar 

  18. H. Tanaka, T. Ojima, and K. Nishita, Amino acid sequence of troponin-I from Akazara scallop striated adductor muscle. J. Biochem. 124, 304–310 (1998).

    PubMed  CAS  Google Scholar 

  19. O. Herzberg, and M. N. G. James, Structure of the calcium regulatory muscle protein troponin-C at 2.8 Å resolution. Nature 313, 653–659 (1985).

    Article  PubMed  CAS  Google Scholar 

  20. M. Sundaralingam, R. Bergstrom, G. Strasburg, S. T. Rao, P. Roychowdhury, M. Greaser, and B. C. Wang, Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science 227, 945–948 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. S. M. Gagné, S. Tsuda, M. X. Li, L. B. Smillie, and B. D. Sykes, Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Nat. Struct. Biol. 2, 784–789 (1995).

    Article  PubMed  Google Scholar 

  22. C. M. Slupsky, and B. D. Sykes, NMR solution structure of calcium-saturated skeletal muscle troponin C. Biochemistry 12, 15953–15964 (1995).

    Article  Google Scholar 

  23. D. G. Vassylyev, S. Takeda, S. Wakatsuki, K. Maeda, and Y. Maéda, Crystal structure of troponin C in complex with troponin I fragment at 2.3 Å — resolution. Proc. Natl. Acad. Sci. USA 95, 4847–4852 (1998).

    Article  PubMed  CAS  Google Scholar 

  24. S. Takeda, A. Yamashita, K. Maeda, and Y. Maéda, Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424, 35–41 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. M. V. Vinogradova, D. B. Stone, G. G. Malanina, C. Karatzaferi, R. Cooke, R. A. Mendelson, and R. J. Fletterick, Ca2+-regulated structural changes in troponin. Proc. Natl. Acad. Sci. USA 102, 5038–5043 (2005).

    Article  PubMed  CAS  Google Scholar 

  26. F. Yumoto, M. Nara, H, Kagi, W. Iwasaki, T. Ojima, K. Nishita, K. Nagata, and M. Tanokura, Coordination structures of Ca2+ and Mg2+ in Akazara scallop troponin C in solution. FTIR spectroscopy of side-chain COO groups. Eur. J. Biochem. 268, 6284–6290 (2001).

    Article  PubMed  CAS  Google Scholar 

  27. M. Nara, F. Yumoto, K. Nagata, M. Tanokura, H. Kagi, T. Ojima, and K. Nishita, Fourier transform infrared spectroscopic study on the binding of Mg2+ to a mutant Akazara scallop troponin C (E142Q). Biopolymers 74, 77–81 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. F. Yumoto, K. Nagata, K. Adachi, N. Nemoto, T. Ojima, K. Nishita, I. Ohtsuki, and M. Tanokura, NMR structural study of troponin C C-terminal domain complexed with troponin I fragment from Akazara scallop. Adv. Exp. Med. Biol. 538, 195–201 (2003).

    PubMed  CAS  Google Scholar 

  29. P. Güntert, C. Mumenthaler, and K. Wüthrich, Torsion angle dynamics for NMR structure calculation with the new program DYANA. J. Mol. Biol. 273, 283–298 (1997).

    Article  PubMed  Google Scholar 

  30. M. R. Nelson and W. J. Chazin, Structures of EF-hand Ca2+-binding poroteins: Diversity in the organization, packing and response to Ca2+ binding, Biometals 11, 297–318 (1998).

    Article  PubMed  CAS  Google Scholar 

  31. H. Tanaka, Y. Takeya, T. Doi, F. Yumoto, M. Tanokura, I. Ohtsuki, K. Nishita, and T. Ojima, Comparative studies on the functional roles of N-and C-terminal regions of molluskan and vertebrate troponin-I, FEBS J. 17, 4475–4486 (2005).

    Article  CAS  Google Scholar 

  32. S. Morimoto, F. Yanaga, R. Minakami, and I. Ohtsuki, Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy, Am. J. Physiol. 275, C200–C207 (1998).

    PubMed  CAS  Google Scholar 

  33. F. Takahashi-Yanaga, S. Morimoto, K. Harada, R. Minakami, F. Shiraishi, M. Ohta, Q.-W. Lu, T. Sasaguri, and I. Ohtsuki, Functional consequences of the mutations in human cardiac troponin I gene found in familial hypertrophic cardiomyopathy, J. Mol. Cell. Cardiol. 3, 2095–2107 (2001).

    Article  CAS  Google Scholar 

  34. I. Ohtsuki, Molecular basis of calcium regulation of striated muscle contraction, Adv. Exp. Med. Biol. 565, 223–231 (2005).

    Article  PubMed  CAS  Google Scholar 

  35. H. Nakaura, F. Yanaga, I, Ohtsuki, and S. Morimoto, Effects of missense mutations Phe110Ile and Glu-244Asp in human cardiac troponin T on force generation in skinned cardiac muscle fibers. J. Biochem. 126, 457–460 (1999).

    PubMed  CAS  Google Scholar 

  36. A. V. Gomes, and J. D. Potter, Molecular and cellular aspects of troponin cardiomyopathies, Ann. N. Y. Acad. Sci. 1015, 214–224 (2004).

    Article  PubMed  CAS  Google Scholar 

  37. B. Hoffmann, H. Schmidt-Traub, A. Perrot, K. J. Osterziel, and R. Gessner, First mutation in cardiac troponin C, L29Q, in a patient with hypertrophic cardiomyopathy. Hum. Mutat. 17, 524 (2001).

    Article  PubMed  CAS  Google Scholar 

  38. S. Morimoto, Q.-W. Lu, K. Harada, F. Takahashi-Yanaga, R. Minakami, M. Ohta, T. Sasaguri, and I. Ohtsuki, Ca2+-desensitizing effect of a deletion mutation ΔK210 in cardiac troponin T that causes familial dilated cardiomyopathy, Proc. Natl. Acad. Sci. USA 99, 913–918 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. J. Mogensen, T. Kubo, M. Duque, W. Uribe, A. Shaw, R. Murphy, J. R. Gimeno, P. Elliott, and W. J. McKenna, Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations, J. Clin. Invest. 111, 209–216 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. S. S. Kushwaha, J. T. Fallon, and V. Fuster, Restrictive cardiomyopathy, N. Engl. J. Med. 336, 267–276 (1997).

    Article  PubMed  CAS  Google Scholar 

  41. W. J. Vallins, N. J. Brand, N. Dabhade, G. Butler-Brown, M. H. Yacoub, and P. J. Barton, Molecular cloning of human cardiac troponin I using polymerase chain reaction, FEBS Lett. 270, 57–61 (1990).

    Article  PubMed  CAS  Google Scholar 

  42. S. Ausoni, M. Campione, A. Picard, P. Moretti, M. Vitadello, C. De Nardi, and S. Schiaffino, Structure and regulation of the mouse cardiac troponin I gene, J. Biol. Chem. 269, 339–346 (1994).

    PubMed  CAS  Google Scholar 

  43. AJ842179 NCBI, Bos taurus tnni3 gene for cardiac troponin I, exons 1–8.

    Google Scholar 

  44. J. M. Wilkinson, and R. J. Grand, The amino acid sequence of troponin I from rabbit skeletal muscle, Biochem. J. 149, 493–496 (1975).

    PubMed  CAS  Google Scholar 

  45. R. B. Quaggio, J. A. Ferro, P. B. Monteiro, and F. C. Reinach, Cloning and expression of chicken skeletal muscle troponin I in Escherichia coli: the role of rare codons on the expression level, Protein Sci. 2, 1053–1056 (1993).

    Article  PubMed  CAS  Google Scholar 

  46. H. Syska, J. M. Wilkinson, R. J. Grand, and S. V. Perry, The relationship between biological activity and primary structure of troponin I from white skeletal muscle of the rabbit, Biochem. J. 153, 375–387 (1976).

    PubMed  CAS  Google Scholar 

  47. C. Seidman et al., CardioGenomics, Mutation Database, Cardiac troponin I URL: http://genetics.med.harvard.edu/~seidman/cg3/muts/TNNI3_mutations_TOC.html.

    Google Scholar 

  48. H. M. Rarick, X.-H. Tu, R. J. Solaro, and A. F. Martin, The C terminus of cardiac troponin I is essential for full inhibitory activity and Ca2+ sensitivity of rat myofibrils, J. Biol. Chem. 272, 26887–26892 (1997).

    Article  PubMed  CAS  Google Scholar 

  49. D. B. Foster, T. Noguchi, P. VanBuren, A. M. Murphy, and J. E. Van Eyk, C-terminal truncation of cardiac troponin I causes divergent effects on ATPase and force: implications for the pathophysiology of myocardial stunning, Circ. Res. 93, 917–924 (2003).

    Article  PubMed  CAS  Google Scholar 

  50. F. Yumoto, Q. W. Lu, S. Morimoto, H. Tanaka, N. Kono, K. Nagata, T. Ojima, F. Takahashi-Yanaga, Y. Miwa, T. Sasaguri, K. Nishita, M. Tanokura, I. Ohtsuki. Drastic Ca2+ sensitization of myofilament associated with a small structural change in troponin I in inherited restrictive cardiomyopathy, Biochem. Biophys. Res. Commun. 338, 1519–1526 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. S. Morimoto, and I. Ohtsuki, Ca2+-and Sr2+-sensitivity of the ATPase activity of rabbit skeletal muscle myofibrils: effect of the complete substitution of troponin C with cardiac troponin C, calmodulin, and parvalbumins, J. Biochem. 101, 230–291 (1987).

    Google Scholar 

  52. M. Hatakenaka, and I. Ohtsuki, Replacement of three troponin components with cardiac troponin components within single glycerinated skeletal muscle fibers, Biochem. Biophys. Res. Commun. 181, 1022–1027 (1991).

    Article  PubMed  CAS  Google Scholar 

  53. M. Hatakenaka and I. Ohtsuki, Effect of removal and reconstitution of troponins C and I on the Ca2+-activated tension development of single glycerinated rabbit skeletal muscle fibers, Eur. J. Biochem. 205, 985–993 (1992).

    Article  PubMed  CAS  Google Scholar 

  54. A. V. Gomes, J. Liang, and J. D. Potter, Mutations in human cardiac troponin I that are associated with restrictive cardiomyopathy affect basal ATPase activity and the calcium sensitivity of force development, J. Biol. Chem. 280, 30909–30915 (2005).

    Article  PubMed  CAS  Google Scholar 

  55. K. Murakami, F. Yumoto, S. Ohki, T. Yasunaga, M. Tanokura, and T. Wakabayashi, Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin, J. Mol. Biol. 352, 178–201 (2005).

    Article  PubMed  CAS  Google Scholar 

  56. R. Koradi, M. Billeter, and K. Wüthrich, MOLMOL: a program for display and analysis of macromolecular structures, J. Mol. Graph. 14, 51–55 (1996).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Yumoto, F., Tanokura, M. (2007). Structural and Functional Analysis of Troponins from Scallop Striated and Human Cardiac Muscles. In: Ebashi, S., Ohtsuki, I. (eds) Regulatory Mechanisms of Striated Muscle Contraction. Advances in Experimental Medicine and Biology, vol 592. Springer, Tokyo. https://doi.org/10.1007/978-4-431-38453-3_15

Download citation

Publish with us

Policies and ethics