Skip to main content

Over the last century, mammalian embryos have been used extensively as a common animal model to investigate fundamental questions in the field of developmental biology. More recently, the establishment of transgenic and gene-targeting systems in laboratory mice has enabled researchers to unveil the genetic mechanisms under lying complex developmental processes (Mak, 2007). However, our understanding of cell—cell interactions and their molecular basis in the early stages of mammalian embryogenesis is still very fragmentary. One of the major problems is the difficulty of precise manipulation and limited accessibility to mammalian embryos via uterus wall. Unfortunately, existing tissue and organotypic culture systems per se do not fully recapitulate three-dimensional, dynamic processes of organogenesis observed in vivo. Although transgenic animal technology and virus-mediated gene delivery are useful to manipulate gene expression, these techniques take much time and financial costs, which limit their use.

Whole-embryo mammalian culture system was established by New and colleague in the 1970s, and was modified thereafter by several researchers (reviewed by New, 1971, 1978; Sturm and Tam, 1993; Hogan et al., 1994; Eto and Osumi-Yamashita, 1995; Tam, 1998). At first, the whole-embryo culture system was used in the field of teratology, and then applied in a variety of developmental biology fields, because this system well maintains the embryonic growth and morphogenesis that are comparable to those in utero, and dramatically improves accessibility to the early fetal stages. Furthermore, in combination with gene-delivery techniques such as electroporation, gene expression can be manipulated in a tissue- and region-specific manner (Osumi and Inoue, 2001; Takahashi et al., 2002). Here we introduce this combinatorial proce dure applying of the electroporation technique to whole-embryo culture system. We then illustrate the use of this approach in the developmental neurobiology by present ing our findings on molecular mechanisms controlling stem cell maintenance and neuronal migration in the embryonic cortex. Finally, we will discuss future directions and a potential widespread value of this method in developmental biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai Y, Funatsu N, Numayama-Tsuruta K, Nomura T, Nakamura S, Osumi N (2005) Role of Fabp7, a downstream gene of Pax6, in the maintenance of neuroepithelial cells during early embryonic development of the rat cortex. J Neurosci 25:9752–9761.

    Article  CAS  Google Scholar 

  • Barnabe-Heider F, Meletis K, Eriksson M, Bergmann O, Sabelstrom H, Harvey MA, Mikkers H, Frisen J (2008) Genetic manipulation of adult mouse neurogenic niches by in vivo electropora-tion. Nat Methods 5:189–196.

    Article  CAS  Google Scholar 

  • Bielle F, Griveau A, Narboux-Neme N, Vigneau S, Sigrist M, Arber S, Wassef M, Pierani A (2005) Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat Neurosci 8:1002–1012.

    Article  CAS  Google Scholar 

  • Borrell V, Marin O (2006) Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling. Nat Neurosci 9:1284–1293.

    Article  CAS  Google Scholar 

  • Calegari F, Haubensak W, Yang D, Huttner WB, Buchholz F (2002) Tissue-specific RNA inter ference in postimplantation mouse embryos with endoribonuclease-prepared short interfering RNA. Proc Natl Acad Sci U S A 99:14236–14240.

    Article  CAS  Google Scholar 

  • Calegari F, Marzesco AM, Kittler R, Buchholz F, Huttner WB (2004) Tissue-specific RNA interference in post-implantation mouse embryos using directional electroporation and whole embryo culture. Differentiation 72:92–102.

    Article  CAS  Google Scholar 

  • Callaerts P, Halder G, Gehring WJ (1997) PAX-6 in development and evolution. Annu Rev Neurosci 20:483–532.

    Article  CAS  Google Scholar 

  • Caviness VS, Jr., Takahashi T (1995) Proliferative events in the cerebral ventricular zone. Brain Dev 17:159–163.

    Article  Google Scholar 

  • Caviness VS, Jr., Takahashi T, Nowakowski RS (2000) Neuronogenesis and the early events of neocortical histogenesis. Results Probl Cell Differ 30:107–143.

    Google Scholar 

  • Cockroft DL (1976) Comparison of in vitro and in vivo development of rat foetuses. Dev Biol 48:163–172.

    Article  CAS  Google Scholar 

  • Davidson BP, Tsang TE, Khoo PL, Gad JM, Tam PP (2003) Introduction of cell markers into germ layer tissues of the mouse gastrula by whole embryo electroporation. Genesis 35:57–62.

    Article  CAS  Google Scholar 

  • Estivill-Torrus G, Vitalis T, Fernandez-Llebrez P, Price DJ (2001) The transcription factor Pax6 is required for development of the diencephalic dorsal midline secretory radial glia that form the subcommissural organ. Mech Dev 109:215–224.

    Article  CAS  Google Scholar 

  • Eto K, Osumi-Yamashita N (1995) Whole embryo culture and the study of post-implantation mammalian development. Dev Growth Differ 37:123–132.

    Article  Google Scholar 

  • Eto K, Takakubo F (1985) Improved development of rat embryos in culture during the period of craniofacial morphogenesis. J Craniofac Genet Dev Biol 5:351–355.

    CAS  Google Scholar 

  • Garcia-Moreno F, Lopez-Mascaraque L, De Carlos JA (2007a) Origins and migratory routes of murine Cajal-Retzius cells. J Comp Neurol 500:419–432.

    Article  CAS  Google Scholar 

  • Garcia-Moreno F, Lopez-Mascaraque L, de Carlos JA (2007b) Early Telencephalic Migration Topographically Converging in the Olfactory Cortex. Cereb Cortex 18:1239–1252.

    Article  Google Scholar 

  • Giroux SJ, Alves-Leiva C, Lecluse Y, Martin P, Albagli O, Godin I (2007) Gene transfer to pre-hematopoietic and committed hematopoietic precursors in the early mouse yolk sac: a compar ative study between in situ electroporation and retroviral transduction. BMC Dev Biol 7:79.

    Article  CAS  Google Scholar 

  • Hogan BLM, Beddington RSP, Constantini F, Lucy E (1994) Manipulating the mouse embryo. A Laboratory Manual, Cold Spring Harbor Laboratory New York.

    Google Scholar 

  • Inoue T, Krumlauf R (2001) An impulse to the brain — using in vivo electroporation. Nat Neurosci 4 Suppl:1156–1158.

    Google Scholar 

  • Inoue T, Nakamura S, Osumi N (2000) Fate mapping of the mouse prosencephalic neural plate. Dev Biol 219:373–383.

    Article  CAS  Google Scholar 

  • Inoue T, Tanaka T, Takeichi M, Chisaka O, Nakamura S, Osumi N (2001) Role of cadherins in maintaining the compartment boundary between the cortex and striatum during development. Development 128:561–569.

    CAS  Google Scholar 

  • Itasaki N, Bel-Vialar S, Krumlauf R (1999) ‘Shocking’ developments in chick embryology: elec troporation and in ovo gene expression. Nat Cell Biol 1:E203–E207.

    Article  CAS  Google Scholar 

  • Kawasaki T, Ito K, Hirata T (2006) Netrin 1 regulates ventral tangential migration of guidepost neurons in the lateral olfactory tract. Development 133:845–853.

    Article  CAS  Google Scholar 

  • Kriegstein AR, Noctor SC (2004) Patterns of neuronal migration in the embryonic cortex. Trends Neurosci 27:392–399.

    Article  CAS  Google Scholar 

  • Lee YM, Osumi-Yamashita N, Ninomiya Y, Moon CK, Eriksson U, Eto K (1995) Retinoic acid stage-dependently alters the migration pattern and identity of hindbrain neural crest cells. Development 121:825–837.

    CAS  Google Scholar 

  • Maekawa M, Takashima N, Arai Y, Nomura T, Inokuchi K, Yuasa S, Osumi N (2005) Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neuro genesis. Genes Cells 10:1001–1014.

    Article  CAS  Google Scholar 

  • Mak TW (2007) Gene targeting in embryonic stem cells scores a knockout in Stockholm. Cell 131:1027–1031.

    Article  CAS  Google Scholar 

  • Marin O, Rubenstein JL (2003) Cell migration in the forebrain. Annu Rev Neurosci 26:441–483.

    Article  CAS  Google Scholar 

  • Matsuda T, Cepko CL (2007) Controlled expression of transgenes introduced by in vivo electro poration. Proc Natl Acad Sci U S A 104:1027–1032.

    Article  CAS  Google Scholar 

  • McConnell SK (1995) Constructing the cerebral cortex: neurogenesis and fate determination. Neuron 15:761–768.

    Article  CAS  Google Scholar 

  • Miller FD, Gauthier AS (2007) Timing is everything: making neurons versus glia in the developing cortex. Neuron 54:357–369.

    Article  CAS  Google Scholar 

  • Molyneaux BJ, Arlotta P, Menezes JR, Macklis JD (2007) Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 8:427–437.

    Article  CAS  Google Scholar 

  • New DAT (1971) Studies on mammalian fetuses in vitro during the period of organogenesis. In: Austin C (Ed) The Mammalian Fetuses In Vitro. Chapman and Hall, London: pp. 15–65.

    Google Scholar 

  • New DA (1978) Whole-embryo culture and the study of mammalian embryos during organo genesis. Biol Rev Camb Philos Soc 53:81–122.

    Article  Google Scholar 

  • New DA, Coppola PT, Cockroft DL (1976) Improved development of head-fold rat embryos in culture resulting from low oxygen and modifications of the culture serum. J Reprod Fertil 48:219–222.

    Google Scholar 

  • Nieuwenhuys R (1994) The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat Embryol (Berl) 190:307–337.

    CAS  Google Scholar 

  • Nomura T, Osumi N (2004) Misrouting of mitral cell progenitors in the Pax6/small eye rat telen cephalon. Development 131:787–796.

    Article  CAS  Google Scholar 

  • Nomura T, Osumi N (2007) Manipulating mammalian embryos for research on the developing cerebral cortex. In: Esashi M, Ishii K, Ohuchi N, Osumi N, Sato M, and Tamaguchi T (Eds) Future Medical Engineering Based on Bionano Technology: Proc Final Symp Tohoku Univ 21th COE Prog, Imperial College: pp. 15–22.

    Google Scholar 

  • Nomura T, Holmberg J, Frisen J, Osumi N (2006) Pax6-dependent boundary defines alignment of migrating olfactory cortex neurons via the repulsive activity of ephrin A5. Development 133:1335–1345.

    Article  CAS  Google Scholar 

  • Nomura T, Haba H, Osumi N (2007) Role of a transcription factor Pax6 in the developing verte brate olfactory system. Dev Growth Differ 49:683–690.

    Article  CAS  Google Scholar 

  • Osumi N (2001) The role of Pax6 in brain patterning. Tohoku J Exp Med 193:163–174.

    Article  CAS  Google Scholar 

  • Osumi N, Inoue T (2001) Gene transfer into cultured mammalian embryos by electroporation. Methods 24:35–42.

    Article  CAS  Google Scholar 

  • Osumi-Yamashita N (1996) Retinoic acid and mammalian craniofacial morphogenesis. J Biosci 21:313–327.

    Article  CAS  Google Scholar 

  • Osumi-Yamashita N, Ninomiya Y, Doi H, Eto K (1994) The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Dev Biol 164:409–419.

    Article  CAS  Google Scholar 

  • Pierreux CE, Poll AV, Jacquemin P, Lemaigre FP, Rousseau GG (2005) Gene transfer into mouse prepancreatic endoderm by whole embryo electroporation. JOP 6:128–135.

    Google Scholar 

  • Saito T, Nakatsuji N (2001) Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev Biol 240:237–246.

    Article  CAS  Google Scholar 

  • Sato Y, Hirata T, Ogawa M, Fujisawa H (1998) Requirement for early-generated neurons recognized by monoclonal antibody lot1 in the formation of lateral olfactory tract. J Neurosci 18:7800–7810.

    CAS  Google Scholar 

  • Scardigli R, Baumer N, Gruss P, Guillemot F, Le Roux I (2003) Direct and concentration- dependent regulation of the proneural gene Neurogenin2 by Pax6. Development 130:3269–3281.

    Article  CAS  Google Scholar 

  • Simpson TI, Price DJ (2002) Pax6; a pleiotropic player in development. Bioessays 24:1041–1051.

    Article  CAS  Google Scholar 

  • Sturm K, Tam PP (1993) Isolation and culture of whole postimplantation embryos and germ layer derivatives. Methods Enzymol 225:164–190.

    Article  CAS  Google Scholar 

  • Takahashi M, Osumi N (2002) Pax6 regulates specification of ventral neuron subtypes in the hindbrain by establishing progenitor domains. Development 129:1327–1338.

    CAS  Google Scholar 

  • Takahashi M, Sato K, Nomura T, Osumi N (2002) Manipulating gene expressions by electropora tion in the developing brain of mammalian embryos. Differentiation 70:155–162.

    Article  CAS  Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS, Jr. (1995) The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J Neurosci 15:6046–6057.

    CAS  Google Scholar 

  • Takiguchi-Hayashi K, Sekiguchi M, Ashigaki S, Takamatsu M, Hasegawa H, Suzuki-Migishima R, Yokoyama M, Nakanishi S, Tanabe Y (2004) Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J Neurosci 24:2286–2295.

    Article  CAS  Google Scholar 

  • Tam PP (1998) Postimplantation mouse development: whole embryo culture and micro manipulation. Int J Dev Biol 42:895–902.

    CAS  Google Scholar 

  • Tomioka N, Osumi N, Sato Y, Inoue T, Nakamura S, Fujisawa H, Hirata T (2000) Neocortical origin and tangential migration of guidepost neurons in the lateral olfactory tract. J Neurosci 20:5802–5812.

    CAS  Google Scholar 

  • Walther C, Gruss P (1991) Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113:1435–1449.

    CAS  Google Scholar 

  • Warren N, Caric D, Pratt T, Clausen JA, Asavaritikrai P, Mason JO, Hill RE, Price DJ (1999) The transcription factor, Pax6, is required for cell proliferation and differentiation in the developing cerebral cortex. Cereb Cortex 9:627–635.

    Article  CAS  Google Scholar 

  • Ybot-Gonzalez P, Savery D, Gerrelli D, Signore M, Mitchell CE, Faux CH, Greene ND, Copp AJ (2007) Convergent extension, planar-cell-polarity signalling and initiation of mouse neural tube closure. Development 134:789–799.

    Article  CAS  Google Scholar 

  • Yoshida M, Assimacopoulos S, Jones KR, Grove EA (2006) Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order. Development 133:537–545.

    Article  CAS  Google Scholar 

  • Yozu M, Tabata H, Nakajima K (2005) The caudal migratory stream: a novel migratory stream of interneurons derived from the caudal ganglionic eminence in the developing mouse forebrain. J Neurosci 25:7268–7277.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriko Osumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Nomura, T., Takahashi, M., Osumi, N. (2009). Electroporation into Cultured Mammalian Embryos. In: Nakamura, H. (eds) Electroporation and Sonoporation in Developmental Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-09427-2_13

Download citation

Publish with us

Policies and ethics