Skip to main content

Retinal Fiber Tracing by In Ovo Electroporation

  • Chapter
  • 1064 Accesses

Axonal tracing techniques are the fundamentals for the investigation of neural circuit formation. In ovo electroporation system allows us to transfect a gene of interest to the desired place in chick embryos (Odani et al., 2008). Recently, Tol2 transposase element, which was originally found in medaka fish (Koga et al., 1996), has been adapted to an in ovo electroporation system (Niwa et al., 1991; Kawakami et al., 1998, 2000, 2004a, 2004b; Kawakami & Noda, 2004; Kawakami, 2005, 2007; Sato et al., 2007). This system assures the integration of the transgene into the genome by electroporation (Niwa et al., 1991; Sato et al., 2007). We applied this system for tracing retinal fibers (Harada et al., 2008). In this chapter, we demonstrate the method of tracing retinal fibers from both small and large groups of the retinal ganglion cell (RGC) with transposon-mediated gene transfer by in ovo electroporation to chick embryos.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Callahan, C. A., Thomas, J. B. (1994). Tau-beta-galactosidase, an axon-targeted fusion protein.Proc Natl Acad Sci U S A 91, 5972–5976.

    Article  CAS  Google Scholar 

  • Hamburger, V., Hamilton, H. L. (1992). A series of normal stages in the development of the chick embryo. (1951). Dev Dyn 195, 231–272.

    CAS  Google Scholar 

  • Harada, H., Takahashi, Y., Kawakami, K., Ogura, T., Nakamura, H. (2008). Tracing of retinal fiber trajectory with a method of transposon-mediated genomic integration in chick embryo. Dev Growth Differ, 50, 97–702.

    Article  Google Scholar 

  • Katahira, T., Sato, T., Sugiyama, S., Okafuji, T., Araki, I., Funahashi, J., Nakamura, H. (2000).Interaction between Otx2 and Gbx2 defines the organizing center for the optic tectum. Mech Dev 91, 43–52.

    Article  CAS  Google Scholar 

  • Kawakami, K. (2005). Transposon tools and methods in zebrafish. Dev Dyn 234, 244–254.

    Article  CAS  Google Scholar 

  • Kawakami, K. (2007). Tol2: A versatile gene transfer vector in vertebrates. Genome Biol 8 Suppl 1, S7.

    Article  Google Scholar 

  • Kawakami, K., Noda, T. (2004). Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics 166, 895–899.

    Article  CAS  Google Scholar 

  • Kawakami, K., Koga, A., Hori, H., Shima, A. (1998). Excision of the tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene 225, 17–22.

    Article  CAS  Google Scholar 

  • Kawakami, K., Shima, A., Kawakami, N. (2000). Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97, 11403–11408.

    Article  CAS  Google Scholar 

  • Kawakami, K., Imanaka, K., Itoh, M., Taira, M. (2004a). Excision of the Tol2 transposable element of the medaka fish Oryzias latipes in Xenopus laevis and Xenopus tropicalis. Gene 338,93–98.

    Article  CAS  Google Scholar 

  • Kawakami, K., Takeda, H., Kawakami, N., Kobayashi, M., Matsuda, N., Mishina, M. (2004b).A transposon-mediated gene trap approach identifies developmentally regulated genes in zebrafish. Dev Cell 7, 133–144.

    Article  CAS  Google Scholar 

  • Koga, A., Suzuki, M., Inagaki, H., Bessho, Y., Hori, H. (1996). Transposable element in fish. Nature 383, 30.

    Article  CAS  Google Scholar 

  • Miyawaki, A. (2005). Innovations in the imaging of brain functions using fluorescent proteins.Neuron 48, 189–199.

    Article  CAS  Google Scholar 

  • Moriyoshi, K., Richards, L. J., Akazawa, C., O'Leary, D. D., Nakanishi, S. (1996). Labeling neural cells using adenoviral gene transfer of membrane-targeted GFP. Neuron 16, 255–260.

    Article  CAS  Google Scholar 

  • Niwa, H., Yamamura, K., Miyazaki, J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199.

    Article  CAS  Google Scholar 

  • Odani, N., Ito, K., Nakamura, H. (2008). Electroporation as an efficient method of gene transfer. Dev Growth Differ 50, 443–448.

    Article  CAS  Google Scholar 

  • Sato, Y., Kasai, T., Nakagawa, S., Tanabe, K., Watanabe, T., Kawakami, K., Takahashi, Y. (2007). Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305, 616–624.

    Article  CAS  Google Scholar 

  • Suemori, H., Kadodawa, Y., Goto, K., Araki, I., Kondoh, H., Nakatsuji, N. (1990). A mouse embryonic stem cell line showing pluripotency of differentiation in early embryos and ubiquitous beta-galactosidase expression. Cell Differ Dev 29, 181–186.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harukazu Nakamura Phd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Harada, H., Nakamura, H. (2009). Retinal Fiber Tracing by In Ovo Electroporation. In: Nakamura, H. (eds) Electroporation and Sonoporation in Developmental Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-09427-2_10

Download citation

Publish with us

Policies and ethics