Skip to main content
  • 676 Accesses

Substantial attention has been paid to fuel cell technology both in R&D and niche markets for almost two decades now. For certain mass applications of fuel cells, very fast market penetration has been projected several times during the last 10 years (Frost & Sullivan, 2001; Wurster, 1999; AMCG, 2002; Wengel & Schirrmeister, 2000); however, these projections did not materialise due to unresolved technical issues and high risks for the investments in mass produced elements of the fuel cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An integrated dynamic assessment of CHP with fuel cell technologies is being made in ongoing Eduard projects. The projects are carried out by the Research Center Juelich and the Research Institute for Energy Economics (FFE). The results can be used as a further indicator for the position in the technology cycle (Riensche, 2006).

  2. 2.

    Database provider Questel/Orbit – Intellectual Property Group, database EPPATENT or database provider STN for the publication analysis.

  3. 3.

    The search strategy for patents was modified to address a comment of MTU that the number of patents in this figure is too low. On one hand, the patent classes IPC H01M-008 and H01M-004/88 were used with the keywords “Molten Carbonate or Liquid Electrolyte" in the abstracts, on the other hand all EP patents of MTU and IHI with the keyword “fuel cell” were taken into account.

  4. 4.

    A lower representation of German publications in the American SCI database can be assumed; however, analysis made in alternative databases (Compendex, Pascal) did not yield a different result.

  5. 5.

    This trend can also be observed in the SOFC applications. The respective number of German patents differs in the pure frequency count (Fig. 4.7) and in the analysis of the country of origin. This is due to the fact that, with the same underlying number of patents in both evaluations, the analysis of country of origin counts each inventor in a patent.

  6. 6.

    http://www.fuelcells.org/db/

  7. 7.

    4 installations in the 1980s and 150 in 1990s.

  8. 8.

    UTC originally wanted to make a complete switch to the PEM technology, but is now once again backing the proven AFC technology since the targets for PEM have not been achieved.

  9. 9.

    Within the scope of the research project, the attempt was also made to analyse the development of registering trade names for fuel cell products over time. A lack of classification prevents a more precise study – since 1997, however, there has been a clear increase in the registration figures.

  10. 10.

    ZIP (Zukunfts-Investitions-Programm): “Programme on investment in the future" – this programme covers R&D in the area of non-nuclear, environmentally friendly energy research, e.g. fuel cells.

  11. 11.

    As a reminder: the more important figure for the producers of components is not the number of applications but the installed electric power.

  12. 12.

    VDMA – Verein Deutscher Maschinenbauanstalten (German Engineering Federation).

  13. 13.

    DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V. (Society for Chemical Engineering and Biotechnology).

  14. 14.

    See https://www.hfpeurope.org/uploads/835/JTI_QA_11JUL2005.pdf

  15. 15.

    http://www.nkj-ptj.de/H2/BZ-Projekte/

  16. 16.

    Funds are also provided via the AIF (Arbeitsgemeinschaft industrieller Forschungsvereinigungen “Otto von Guericke" e.V.). According to information of the AiF, it is not possible to assign funds to specific technologies such as fuel cells because they are structured by research association rather than by technology.

  17. 17.

    See press release of the ministry: http://www.bmvbs.de/Presse/Pressemitteilungen-,1632.954868/Tiefensee-stellt-nationales-In.htm?global.back=/Presse/-%2c1632%2c2/Pressemitteilungen.htm%3flink%3dbmv_liste%26link.sKategorie%3d

  18. 18.

    Working Group “Lead Markets" within the Impulse Circle “Innovation Factor State"(2006): Lead Markets Fuel Cells; manuscript.

  19. 19.

    For example, in Japan, the METI chaired a Fuel Cell Commercialisation Study Group (28 members from industry, universities and other public institutes) and the Fuel Cell Commercialisation Conference of Japan (134 institutional and individual members) resulting in a roadmap including public procurement as a market creation instrument until 2010. The US National Hydrogen Energy Roadmap from November 2002 and the implementation plan “Hydrogen Posture Plan" of the Department of Energy are based on a national “Vision and Roadmapping" process. This plan has defined several phases and concrete targets, including 100 specific technological targets and concrete commercialisation plans up to 2015. Entry into the market is supposed to begin in 2010. Both in Canada (Hydrogen und Fuel Cell Coordinating Committee) and the UK (High Level Steering Group), high level expert forums are working towards similar strategies, including start up financing for the participation of industrial federations. In all these countries, co-ordination mechanisms between ministries are in place. For further details, see Wengel (2006).

  20. 20.

    Already the coalition treaty of the new government stipulates that joint initiatives of science, industry and politics shall define strategies to keep or increase German technological and market leadership in new technologies (http://www.bundesrat.de/Site/Inhalt/DE/ 1_20Aktuelles/1.1_20Foederalismusreform/NI/Koalitionsvertrag,property=Dokument.pdf).

  21. 21.

    Other associations such as the Fuel Cell Alliance are important because they help to structure fuel cell activities in Germany.

  22. 22.

    http://www.nkj-ptj.de/datapool/page/7/H2_BZKonzept8Mai2006.pdf

  23. 23.

    National Development Plan H2 and FC Technologies Version 1.1 of the Strategy Council 25 July 2006. http://www.nkj-ptj.de/index.php?index=76

  24. 24.

    This may be difficult to handle as experience has shown that former networks concentrating on basic research but inviting industrial participation did not sufficiently meet the interests of industry, just as calls that invited co-operation between industry and basic science were not attractive enough for basic science.

References

  • AMCG. (2002). Markteinführung von Brennstoffzellen-Produkten: Auswirkungen auf den Maschinen- und Anlagenbau. Voruntersuchung.

    Google Scholar 

  • Beer, M., & Mauch, W. (2006). Ganzheitliche und dynamische Bewertung neuer Energietechnologien der KWK mit Brennstoffzellentechnologie. FfE, München.

    Google Scholar 

  • Brennstoffzellen bündnis Deutschland: Brennstoffzellen-Bündnis Deutschland ruft Politik auf, die Strategie zur Markteinführung umzusetzen. Presseinformation vom 14.12.2004.

    Google Scholar 

  • Frost & Sullivan. (2001). Stationary and portable Fuel Cells – Developments, Markets and Opportunities. Report D226.

    Google Scholar 

  • Gummert, G., & Suttor, W. (2006). Stationäre Brennstoffzellen – Technik und Markt. Heidelberg: C.F. Müller Verlag.

    Google Scholar 

  • Jochem, E., Landwehr, M., Tönsing, E., Nöltscher, Ch., & Vollmar, E. (1997). Energy Scenarios with reduced CO2 emissions until 2050. (in German) Energiewirtschaftliche Tagesfragen, 8, 474–480.

    Google Scholar 

  • Koschorke, W., Bünger, U., Marscheider-Weidemann, F., Pirk, W., Roser, A., & Zerta, M. (2005). Anforderungen an das Handwerk durch die Innovation Brennstoffzelle. Stuttgart: IRB-Verlag.

    Google Scholar 

  • Krewitt, W., Nitsch, J., Fischedick, M., Pehnt, M., & Temming, H. (2006). Market perspectives of stationary fuel cells in a sustainable energy supply system – long-term scenarios for Germany. Energy Policy, 34, 793–803.

    Article  Google Scholar 

  • Krewitt, W., Pehnt, M., Fischedick, M., & Temming, H. V. (Hrsg.). (2004). Brennstoffzellen in der Kraft-Wärme-Kopplung – Ökobilanzen, Szenarien, Marktpotenziale. Berlin: Erich Schmidt Verlag, Berlin.

    Google Scholar 

  • Riensche, E. (2006). Ganzheitliche und dynamische Bewertung neuer Energietechnologien der KWK mit Brennstoffzellentechnologie. Technische Herausfordungen bei der Entwicklung der Brennstoffzellen bis zur Marktreife. FZJ – IWV 3. Jülich

    Google Scholar 

  • Smits, R. (2002). ‘Innovation studies in the 21st century. Questions from a users perspective’. Technological Forecasting and Social Change, 69(9), 861–883.

    Article  Google Scholar 

  • Sundermann, C. (1999). Constructive Technology Assessment, in: Stephan Bröchler, Georg Simonis, Karsten Sundermann (Hg.): Handbuch Technikfolgenabschätzung, Berlin 1999, edition sigma, S. 119–128.

    Google Scholar 

  • Temming, H. V. (2005). Analysen und Simulationen zur Bewertung der Einsatzmöglichkeiten und Marktpotenziale von Brennstoffzellen in der Industrie. Bochum: LEE Uni Bochum.

    Google Scholar 

  • Wengel, J., & Schirrmeister, E. (Ed.). (2000). Innovationsprozess vom Verbrennungsmotor zur Brennstoffzelle. Chancen und Risiken für die baden-württembergische Industrie. Karlsruhe: Fraunhofer ISI.

    Google Scholar 

  • Wengel, J. (2006). Das Beispiel Brennstoffzellentechnologie (The Example of Fuel Cell Technologies). In J. Edler (Ed.), Nachfrageorientierte Innovationspolitik. Büro für Technikfolgen-Abschätzung beim Deutschen Bundestag (TAB), Berlin.

    Google Scholar 

  • Wurster, R. (1999). PEM fuel cells in stationary and mobile applications – Pathways to Commercialization. Sixth International Technical Congress – BIEL’99 – 13th – 19th September 1999 -Bienal de la Industria Eléctrica y Luminotécnica. CADIEM Camara Argentina de Industrias Electromecánicas. Biel.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eberhard Jochem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Physica-Verlag Heidelberg

About this chapter

Cite this chapter

Jochem, E. (2009). Fuel Cell Technologies. In: Jochem, E. (eds) Improving the Efficiency of R&D and the Market Diffusion of Energy Technologies. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2154-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-2154-3_4

  • Published:

  • Publisher Name: Physica-Verlag HD

  • Print ISBN: 978-3-7908-2153-6

  • Online ISBN: 978-3-7908-2154-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics