Skip to main content

A Simplified Fuzzy Relational Structure for Adaptive Predictive Control

  • Chapter

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 16))

Abstract

Model based predictive controllers have a number of appealing features such as:

  • The ability to take into account the impact of the current control action on the future process state. This is a useful when dealing with non-minimum phase behaviors (e.g., to stablize plants whose open-loop response to a positive input step results first in a decrement of the output and only afterwards, in an increment), unknown or partially unknown dynamics.

  • The ability to accomodate knowledge about future requirements on the plant state represented in terms of a pre-defined tracking reference signal.

  • Effectiveness of control even when the predictor is a coarse approximator of the plant dynamics

  • The ability to deal with multiple objectives and constraints, e.g., on the manipulated variable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Buckley, “Universal fuzzy controller”, Automatica, vol. 28, pp. 1245–1248, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. J. Buckley, “Sugeno type controllers are universal controllers”, Fuzzy Sets and Systems, 53, pp. 299–304, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. W. Clarke, C. Mohtadi, and P.S. Tuffs, Generalized Predictive Control — Part I & Part IF, Automatica, 23, 1987, 137–160.

    Article  MATH  Google Scholar 

  4. C. Greco, G. Menga, E. Mosca, and G. Zappa, “Performance improvements of self-tuning controllers by multi-step horizons: The MUSMAR approach”, Automatica, 20, (1984), pp. 681–699.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. F. Klir, and T. A. Folger, Fuzzy Sets, Uncertainty, and Information, Englewood Cliffs, NJ: Prentice-Hall, 1988.

    MATH  Google Scholar 

  6. B. Kosko, “Fuzzy systems as universal approximators”, Proc. of IEEE Int. conf on Fuzzy Systems, San Diego, USA, 1992, pp. 1153–1162.

    Google Scholar 

  7. L. Ljung, System Identification: theory for the user, (Prentice-Hall, Englewood Cliffs, N.J. 1987)

    MATH  Google Scholar 

  8. E. Mosca, G. Zappa, and J. M. Lemos, “Robustness of multipredictor adaptive regulators: MUSMAR”, Automatica, 25, 1989, 521–529.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. W. Nguyen and B. Widrow, “Neural networks for self-learning control systems”, IEEE Control Systems Magazine, Apr. 1990, 18–23.

    Google Scholar 

  10. A. Patwardhan, J. Rawlings, and T. Edgar, “Non-linear model predictive control”, Chemical Engineering Communications, 87 (1990), pp. 123–141.

    Article  Google Scholar 

  11. J. Park, and I. W. Sandberg, “Universal approximation using radial-basis-functions networks” Neural Computation, 3, pp. 246–257, 1991.

    Article  Google Scholar 

  12. W. Pedrycz, Fuzzy Control and Fuzzy Systems (Research Studies Press/Wiley, Chichester 1993).

    MATH  Google Scholar 

  13. W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, Inc. 1976.

    MATH  Google Scholar 

  14. J. Valente de Oliveira, “Neuron inspired learning rules for fuzzy relational structures”, Fuzzy Sets and Systems 57 (1993) 41–53.

    Article  MathSciNet  Google Scholar 

  15. J. Valente de Oliveira, J.M. Lemos, “Long-range predictive adaptive fuzzy relational control”, Fuzzy Sets and Systems 70 (1995) 337–357.

    Article  MathSciNet  Google Scholar 

  16. J. Valente de Oliveira, “A design methodology for fuzzy system interfaces”, IEEE Trans, on Fuzzy Sys, vol. 3, no. 4, 1995, pp. 404–414.

    Article  Google Scholar 

  17. J. Valente de Oliveira and J. M. Lemos, “Speeding up fuzzy relational identification: The RLS approach”, Proc. of the Sixt International Fuzzy Systems Association World Congress, Sao Paulo, Brasil, 1995, pp. 121–124.

    Google Scholar 

  18. J. Valente de Oliveira, “Prediction using relational systems”, in Fuzzy Modelling: Paradigms and Practice W. Pedrycz (ed), Kluwer Academic Publishers, 1996, pp. 91–113.

    Chapter  Google Scholar 

  19. L.X. Wang, “Fuzzy systems are universal approximators”, Proc. of IEEE Inter. Conf. on Fuzzy Systems. San Diego, USA, 1992, pp. 1163–1170.

    Google Scholar 

  20. X.-J. Zeng and M. Singh, “Approximation theory of fuzzy systems -SISO case”, IEEE Trans, on Fuzzy Systems, vol. 2, no. 2, pp. 162–176.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Oliveira, J.V., Lemos, J.M. (1998). A Simplified Fuzzy Relational Structure for Adaptive Predictive Control. In: Driankov, D., Palm, R. (eds) Advances in Fuzzy Control. Studies in Fuzziness and Soft Computing, vol 16. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1886-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1886-4_12

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-11053-9

  • Online ISBN: 978-3-7908-1886-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics