Skip to main content

Intelligent Optimal Design of CMAC Neural Network for Robot Manipulators

  • Chapter

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 21))

Abstract

This chapter presents the application of quadratic optimization for motion control to feedback control of robotic systems using Cerebellar Model Arithmetic Computer (CMAC) neural networks. Explicit solutions to the Hamilton-Jacobi-Bellman (H-J-B) equation for optimal control of robotic systems are found by solving an algebraic Riccati equation. It is shown how CMAC can cope with nonlinearities through optimization with no preliminary off-line learning phase required. The adaptive learning algorithm is derived from Lyapunov stability analysis, so that both system tracking stability and error convergence can be guaranteed in the closed-loop system. The filtered tracking error or critic gain and the Lyapunov function for the nonlinear analysis are derived from the user input in terms of a specified quadratic performance index. Simulation results on a two-link robot manipulator show the satisfactory performance of the proposed control schemes even in the presence of large modeling uncertainties and external disturbances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus, J.S. (1975), “A new approach to manipulator control; the cerebellar model articulation controller(CMAC),” J. Dynamic Syst., Measurement, Contr., Vol. 97, pp. 220–227.

    MATH  Google Scholar 

  2. Barto, A.G. (1990), “Connectionist learning for control,” Neural Networks for Control, The MIT Press, pp. 5–58.

    Google Scholar 

  3. Barron, A.R. (1993), “Universal approximation bounds for superposition of a sigmoidal function,” IEEE Trans. Inform. Theory, Vol. 39, pp. 930–945.

    Article  MathSciNet  MATH  Google Scholar 

  4. Chiang, C.-T. and Lin, C.-S. (1996), “CMAC with general basis functions,” Neural Networks, vol. 9, pp. 1199–1211,.

    Google Scholar 

  5. Commuri, S., Lewis, F.L., Zhu, S.Q., and Liu, K. (1995), “CMAC neural networks for control of nonlinear dynamical systems,” Proceedings of Neural, Parallel and Scientific Computation, Vol. 1, pp. 119–124.

    Google Scholar 

  6. Dawson, D., Grabbe, M., and Lewis, F.L. (1991), “Optimal control of a modified computed-torque controller for a robot manipulator,” Int. J. Robot. Automat., Vol. 6, pp. 161–165.

    Google Scholar 

  7. Hunt, K.J., Sbarbaro, D., Zbikowski, R., and Gawthrop, P.J. (1992), “Neural networks for control systems: a survey,” Automatica, Vol. 28, pp. 1823–1836.

    Article  MathSciNet  Google Scholar 

  8. Johansson, R. (1990), “Quadratic optimization of motion coordination and control,” IEEE Trans. Automat. Contr., Vol. 35, pp. 1197–1208.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kawato, M., Uno, Y., Isobe, M., and Suzuki, R. (1988), “Hierarchical neural network model for voluntary movement with application to robotics,” IEEE Contr. Sys. Mag., pp. 8–16, Apr.

    Google Scholar 

  10. Kirk, D.E. (1986), Optimal Control Theory: An Introduction, Publisher, New York.

    Google Scholar 

  11. Koditschek, D.E. (1987), Qudaratic Lyapunov functions for mechanical systems, Yale Univ. Tech. Rep. 703.

    Google Scholar 

  12. Lane, S.H., Handelman, D.A., Gelfand, J.J. (1992), “Theory and development of higher-order CMAC neural networks,” IEEE Contr. Sys. Mag., pp. 23–30, Apr.

    Google Scholar 

  13. Lewis, F.L., Abdallah, C.T., and Dawson, D.M. (1993), Control of Robot Manipulators, MacMillan, New York.

    Google Scholar 

  14. Lewis, F.L. and Syrmos, V.L. (1995), Optimal Control, second ed., Wiley, New York.

    Google Scholar 

  15. Lewis, F.L., Yesildirek, A., and Liu, K. (1996), “Multilayer neural-net robot controller with guaranteed tracking performance,” IEEE Trans. Neural Networks, Vol. 7, pp. 388–399.

    Article  Google Scholar 

  16. Lin, C.-S. and Kim, H. (1991), “CMAC-based adaptive critic self-learning control,” IEEE Trans. Neural Networks, Vol. 2, no. 5, pp. 530–533.

    Article  Google Scholar 

  17. Luo, G.L. and Saridis, G.N. (1985), “L-Q design of PID controllers for robot arms,” IEEE Jour. of Robot. and Automat., Vol. 1, no. 3, pp. 152–157.

    Google Scholar 

  18. Miller, W.T., Glanz, F.H., and Kraft, L.G. (1987), “Application of a general learning algorithm to the control of robotic manipulators,” Int. J. Robot. Res., Vol. 6, pp. 84–98

    Google Scholar 

  19. Miller, W.T., Hewes, R.H., Glanz, F.H., and Kraft, L.G. (1990), “Real-time dynamic control of an industrial manipulator using a neural-network based learning controller,” IEEE Trans. Robot. Automat., Vol. 6, no. 1, pp. 1–9.

    Article  Google Scholar 

  20. Mischo, W.S. (1996), “How to adapt in neuro control a decision for CMAC,” Neural adaptive control technology, World Scientific Publishing Co., pp. 285314.

    Google Scholar 

  21. Narendra, K.S. and Annaswamy, A.M. (1987), “A new adaptive law for robust adaptation without persistent excitation,” IEEE Trans. Automat. Contr., Vol. 32, no. 2, pp. 134–145.

    Article  MathSciNet  MATH  Google Scholar 

  22. Narendra, K.S. and Parthasarathy, K. (1990), “Identification and control of dynamical systems using neural networks,” IEEE Trans. Neural Networks, Vol. 1, pp. 4–27.

    Google Scholar 

  23. Newton, R. and Xu, Y. (1993), “Neural network control of a space manipulator,” IEEE Contr. Sys. Mag., pp. 14–22 (Dec.).

    Google Scholar 

  24. Ozaki, T., Suzuki, T., Furuhashi, T., Okuma, S., and Uchikawa, Y. (1991), “Trajectory control of robotic manipulators using neural networks,” IEEE Trans. Ind. Elec., Vol. 38, no. 3, pp. 195–202.

    Article  Google Scholar 

  25. Polycarpou, M.M. (1996), “Stable adaptive neural control of scheme for nonlinear systems,” IEEE Trans. Automat. Contr., Vol. 41, pp. 447–451.

    Article  MathSciNet  MATH  Google Scholar 

  26. Saad, M., Bigras, P., Dessaint, L.A., and Al-Haddad, K. (1994), “Adaptive robot control using neural networks,” IEEE Trans. Ind. Elec., Vol. 41, pp. 173–181.

    Article  Google Scholar 

  27. Sanner, R.M. and Slotine, J.-J.E. (1992), “Gaussian networks for direct adaptive control,” IEEE Trans. Neural Networks, Vol. 3, pp. 837–863.

    Article  Google Scholar 

  28. Saridis, G.N. and Lee, C.-S.G. (1979), “Approximation theory of optimal control for trainable manipulators,” IEEE Trans. Syst. Man Cybern., Vol. 9, pp. 152159.

    Google Scholar 

  29. Slotine, J.-J.E. and Li, W. (1991), Applied Nonlinear Control. Prentice Hall.

    Google Scholar 

  30. Werbos, P.J. (1990), “Backpropagation through time: what it does and how to do it,” Proc. IEEE, Vol. 78, no. 10, pp. 1550–1560.

    Article  Google Scholar 

  31. Wong, Y.-F. and Sideris, A. (1992), “Learning convergence in the Cerebellar Model Articulation Controller,” IEEE Trans. Neural Networks, Vol. 3, pp. 115121.

    Google Scholar 

  32. MatLab User’s Guide (1990), Control System Toolbox, The Mathworks, Inc., Natick, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, Y.H., Lewis, F.L. (1998). Intelligent Optimal Design of CMAC Neural Network for Robot Manipulators. In: Jain, L.C., Fukuda, T. (eds) Soft Computing for Intelligent Robotic Systems. Studies in Fuzziness and Soft Computing, vol 21. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1882-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1882-6_5

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-13003-2

  • Online ISBN: 978-3-7908-1882-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics