Skip to main content

AppART: An ART Hybrid Stable Learning Neural Network for Universal Function Approximation

  • Conference paper
Hybrid Information Systems

Part of the book series: Advances in Soft Computing ((AINSC,volume 14))

Abstract

This work describes AppART, an ART—based low parameterized neural model that incrementally approximates continuous—valued multidimensional functions from noisy data using biologically plausible processes. AppART performs a higher—order Nadaraya—Watson regression and can be interpreted as a fuzzy system. Some benchmark problems are solved in order to study AppART from an application point of view and to compare its results with the ones obtained from other models.

The authors wish to thank the Dipartimento di Matematica e Informatica of the Università degli Studi di Udine for its support on the conception and elaboration of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asfour, Y. R., Carpenter, G. A., Grossberg, S., & Lesher, G. W. (1993). Fusion artmap: A neural network architecture for multi-channel data fusion and classification. In Proceedings of WCNN-93, world congress on neural networks (Vol. 2, pp. 210–215 ). Hillsdale, NJ, USA: Lawrence Erlbaum Associates.

    Google Scholar 

  • Bellman, R. (1961). Adaptive control processes: A guided tour. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Bianchini, M., Fasconi, P., & Gori, M. (1995). Learning without local minima in radial basis fucntion networks. IEEE Transactions on Neural Networks, 6, 749–756.

    Google Scholar 

  • Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Clarendon Press.

    Google Scholar 

  • Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning databases.

    Google Scholar 

  • Blanzieri, E., Katenkamp, P., & Giordana, A. (1995). Growing radial basis function networks. In Proceedings of the Fourth Workshop on Learing Robots. Karlsruhe, Germany.

    Google Scholar 

  • Broomhead, D. S., & Lowe, D. (1998). Multivariable functional interpolation and adaptive networks. Complex Systems, 2, 321–329.

    MathSciNet  Google Scholar 

  • Browne, A., & Sun, R. (2002). Connectionist inference models. To appear in Neural Networks.

    Google Scholar 

  • Cano, J. M., Dimitriadis, Y. A., Aranzo, M. J., & Lopez, J. (1996). FasArt: A new neuro—fuzzy architecture for incremental learning in systems identification. In Proceedings of the 13th World Congress of IFAC (Vol. F, pp. 133–138). San Francisco.

    Google Scholar 

  • Cano, J. M., Dimitriadis, Y. A., Aranzo, M. J., & Lopez, J. (1997). FasBack: Matching error based learning for automatic generation of fuzzy logic systems. In Proceedings of the sixth IEEE International Conference on Fuzzy Systems (Vol. 3, pp. 1561–1566). Barcelona.

    Google Scholar 

  • Cano, J. M., Dimitriadis, Y. A., Gomez, E., & LOpez, J. (2001). Learning from noisy information in FasART and FasBack neuro-fuzzy systems. Neural Networks, 14, 407–425.

    Google Scholar 

  • Carpenter, G. A., & Grossberg, S. (1987a). ART2: stable self-organization of pattern recognition codes for analog inputs patterns. Applied Optics, 26, 4919–4930.

    Google Scholar 

  • Carpenter, G. A., & Grossberg, S. (1987b). A massively parallel architecture for a self-organizing neural pattern recognition machine. Computer Vision, Graphics and Image Processing, 37, 54–115.

    Google Scholar 

  • Carpenter, G. A., & Grossberg, S. (1990). ART3: Hierarchical search using chemical transmitters in self-organizing pattern recognition architectures. Neural Networks, 3, 129–152.

    Article  Google Scholar 

  • Carpenter, G. A., & Grossberg, S. (1992). A self-organizing neural network for supervised learning, recognition and prediction. IEEE Comunications Magazine, 30, 38–49.

    Article  Google Scholar 

  • Carpenter, G. A., & Grossberg, S. (1994). Artificial Intelligence and Neural Networks: Steps Toward Principled Integratio. In V. Honavar and L. Uhr (Eds.), Artificial Intelligence and Neural Networks: Steps Toward Principled Integration. San Diego, CA: Academic Press.

    Google Scholar 

  • Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., & Rosen, D. (1992). Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps. IEEE Transactions on Neural Networks, 3, 698–713.

    Article  Google Scholar 

  • Carpenter, G. A., Grossberg, S., & Reynolds, J. H. (1991). ARTMAP: Supervised real-time learning and classification of non-stationary data by a self-organazing neural network. Neural Networks, 4, 565–588.

    Article  Google Scholar 

  • Carpenter, G. A., Grossberg, S., & Rosen, D. B. (1991). Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks, 4, 759–771.

    Article  Google Scholar 

  • Carpenter, G. A., & Markuzon, N. (1998). ARTMAP-IC and medical diagnosis: Instance counting and inconsistent cases. Neural Networks, 11(2), 323–336.

    Google Scholar 

  • Carpenter, G. A., Milenova, B. L., & Noeske, B. W. (1998). Distributed ARTMAP: A neural network for fast distributed supervised learning. Neural Networks, 11(5), 793–813.

    Google Scholar 

  • Carpenter, G. A., & Ross, W. D. (1995). ART-EMAP: A neural network architecture for object recognition by evidence accumulation. IEEE Transactions on Neural Networks, 6 (4), 805–818.

    Article  Google Scholar 

  • Carpenter, G. A., & Tan, A.-H. (1995). Rule extraction: From neural architecture to symbolic representation. Connection Science, 7 (1), 3–27.

    Article  Google Scholar 

  • Caudill, M. (1993). GRNN and bear it. AI Expert, 8, 28–33.

    Google Scholar 

  • Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York: John Wiley.

    MATH  Google Scholar 

  • Esposito, A., Marinaro, M., Oricchio, D., & Scarpetta, S. (2000). Approximation of continuous and discontinuous mappings by a growing neural rbf-based algorithm. Neural Networks, 13, 651–665.

    Article  Google Scholar 

  • Feldman, J. A., Lakoff, G., Bailey, D. R., Narayanan, S., Regier, T., & Stolcke, A. (1996). Lo — the first five years of an automated language acquisition project. AI Review, 8.

    Google Scholar 

  • Freeman, J. A., & Skapura, D. M. (1991). Neural networks: algorithms, applications and programming techniques. Reading: Addison-Wesley.

    Google Scholar 

  • Fritzke, B. (1994a). Fast learning with incremental RBF networks. Neural Processing Letters, 1, 2–5.

    Article  Google Scholar 

  • Fritzke, B. (1994b). Growing cell structures-A self-organizing network for unsupervised and supervised learning. Neural Networks, 7, 1441–1460.

    Article  Google Scholar 

  • Geffner, H. (1992). Default reasoning: causal and conditional theories. Cambridge, MA: MIT Press.

    Google Scholar 

  • Girosi, F., & Poggio, T. (1990). Networks and the best approximation property. Biological Cybernetics, 63, 169–176.

    Google Scholar 

  • Glover, F., & Laguna, M. (1993). Tabu search. In C. Reeves (Ed.), Modern heurisic techniques for combinatorial problems (pp. 70–150 ). Oxford: Blackwell.

    Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading: Addison-Wesley.

    MATH  Google Scholar 

  • Grossberg, S. (1980). How does the brain build a cognitive code? Psycologial Review, 87, 1–51.

    Google Scholar 

  • Grossberg, S. (1982). Studies of Mind and Brain: Neural Principles of Learning, Perception, Development, Cognition, and Motor Control. Boston: Reidel.

    Google Scholar 

  • Grossberg, S., & Williamson, J. R. (1996). A self-organizing system for classifying complex images: Natural texture and synthetic aperture radar (CAS/CNS-TR-96–002). Boston, MA: Boston University.

    Google Scholar 

  • Honavar, V. (1994). Symbolic artificial intelligence and numeric artificial neural networks: Toward a resolution of the dichotomy. In R. Sun and L. Bookman (Eds.), Computational Architectures Integrating Symbolic and Neural Processes (pp. 351–388 ). New York: Kluwer.

    Google Scholar 

  • Hoya, T., & Constantinides, A. G. (1998). An heuristic pattern correction scheme for GRNNs and its application to speech recognition. In Proceedings of the IEEE Workshop on Neural Networks for Signal Processing (pp. 351–359 ). Cambridge, U.K.

    Google Scholar 

  • Hwang, Y. S., & Bang, S. Y. (1997). An efficient method to construct a radial basis function neural network classifier. Neural Networks, 8, 1495–1503.

    Google Scholar 

  • Kakas, A., Kowalski, R., & Toni, F. (1993). Abductive logic programming. Journal of Logic and Computation, 6(2), 719–770.

    Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Google Scholar 

  • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics,. 43, 59–69.

    Google Scholar 

  • Kosko, B. (1997). Fuzzy engineering. New York: Prentice Hall.

    Google Scholar 

  • Lawrence, S., Tsoi, A. C., & Black, A. D. (1996). Function approximation with neural networks and local methods: Bias, variance and smoothness. In P. Bartlett, A. Burkitt, and R. Williamson (Eds.), Australian Conference on Neural Networks, ACNN’96 (pp. 16–21). Australian National University.

    Google Scholar 

  • Mackey, M. C., & Glass, L. (1977). Oscillation and chaos in physiological control systems. Science, 197–287.

    Google Scholar 

  • Manna, Z., & Waldinger, R. (1985). The Logical Basis for Computer Programming (Vol. 1: Deductive Reasoning). Reading: Addison-Wesley.

    MATH  Google Scholar 

  • Marriott, S., & Harrison, R. F. (1995). A modified fuzzy ARTMAP architecture for the approximation of noisy mappings. Neural Networks, 8, 619–641.

    Google Scholar 

  • Martinetz, T. M., Berkovich, S. G., & Shulten, K. J. (1993). Neural-Gas network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks, 4, 558–560.

    Google Scholar 

  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115–133.

    Article  MathSciNet  MATH  Google Scholar 

  • McGarry, K., Wermter, S., & Maclntyre, J. (1999). Hybrid neural systems: from single coupling to fully integrated neural networks. Neural Computing Surveys, 2, 62–93.

    Google Scholar 

  • Millân, J. R. (1994). Learining efficient reactive behavioral sequences from basic reflexes in a goal-oriented autonomous robot. In From Animals to Animats 3: Proceedings of the Third International Conference on Simulation of Adaptive Behavior (pp. 266–274 ). Cambridge, MA: MIT Press.

    Google Scholar 

  • Moody, J., & Darken, C. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation, 1, 281–294.

    Article  Google Scholar 

  • Musavi, M., Ahmed, W., Chan, K., Faris, K., & Hummels, D. (1992). On the training of radial basis function classifiers. Neural Networks, 5, 595–603.

    Google Scholar 

  • Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and Its Application, 10, 186–190.

    Article  Google Scholar 

  • O’Neill, M. C. (1989). Escherichia coli promoters: I. Consensus as it relates to spacing class, specificity, repeat substructure and three dimensional organization. Journal of Biologial Chemistry, 264, 5522–5530.

    Google Scholar 

  • Orr, M. J. L. (1995). Regularization in the seleccion of radial basis function centers. Neural Computation, 7, 606–620.

    Article  Google Scholar 

  • Park, J., & Sandberg, I. W. (1991). Universal approximation using radial basis function. Neural Computation, 3, 246–257.

    Article  Google Scholar 

  • Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78, 1481–1496.

    Article  Google Scholar 

  • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Boston: MIT Press.

    Google Scholar 

  • Schioler, H., & Hartman, U. (1992). Mapping neural network derived from the Parzen window estimator. Neural Networks, 5, 903–909.

    Article  Google Scholar 

  • Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain Sciences, 11, 1-74.

    Google Scholar 

  • Spetch, D. (1990). A general regression neural network. IEEE Transactions on Neural Networks, 2, 568–578.

    Google Scholar 

  • Srinivasa, N. (1997). Learning and generalization of noisy mappings using a modified PROBART neural network. IEEE Transactions on Signal Processing, 45(10), 2533–2550.

    Google Scholar 

  • Sun, R. (1994). Integrating Rules and Connectionism for Robust Commonsense Reasoning. New York: Wiley.

    MATH  Google Scholar 

  • Tan, A.-H. (1997). Cascade ARTMAP: Integration neural computation and symbolic knowledge processing. IEEE Transactions on Neural Networks, 8(2), 237–250.

    Google Scholar 

  • Tan, A.-H. (2000). Innovation in ART Neural Networks. In J. Jain (Ed.), Innovation in ART Neural Networks. CRC Press.

    Google Scholar 

  • Tomandl, D., & Schober, A. (2001). A Modified General Regression Neural Network (MGRNN) with new, efficient training algorithms as a robust `back box’—tool for data analysis. Neural Networks, 14, 1023–1034.

    Google Scholar 

  • Towell, G., & Shavlik, J. (1990). Directed propagation of training signals through knowledge—based neural networks (Tech. Rep. No. CS-TR-1990989). Madison, WI: University of Wisconsin, Computer Sciences Department.

    Google Scholar 

  • Towell, G., & Shavlik, J. (1993). Extracting rules from knowledge-based neural networks. Machine Learning, 13(1), 71–101.

    Google Scholar 

  • Towell, G. G., & Shavlik, J. W. (1994). Knowledge-based artificial neural networks,. Artificial Intelligence, 70, 119–165.

    Google Scholar 

  • Verzi, S. J., Heileman, G. L., Georgiopoulos, M., & Healy, M. J. (1998).Boosted ARTMAP. In Proceedings of the International Joint Conference on Neural Networks (IJCNN-98) (Vol. 1, pp. 396–401). Alaska.

    Google Scholar 

  • Wermter, S., & Sun, R. (2000). Hybrid Neural Systems. Heidelberg: Springer.

    Book  Google Scholar 

  • Williamson, J. R. (1996). Gaussian artmap: A neural network for fast incremental learning of noisy multidimensional maps. Neural Networks, 9, 881–897.

    Google Scholar 

  • Williamson, J. R. (1997). A constructive, incremental-learning network for mixture modeling and clasiffication. Neural Computation, 9, 1517–1543.

    Article  Google Scholar 

  • Williamson, J. R. (1998). A neural model for self-organizing feature detectors and classifiers in a network hierarchy (CAS/CNS TR-98–033). Boston, MA: Boston University.

    Google Scholar 

  • Wilson, D. R., & Martinez, T. R. (1997). Improved heterogeneous distance functions. Journal of Artificial Intelligence Research, 6, 1–34.

    Google Scholar 

  • Wilson, R., & Martinez, T. R. (1996).Heterogeneous radial basis function networks. In Proceedings of the International Conference on Neural Networks (ICNN’96) (Vol. 2, pp. 1263–1267). Washington DC.

    Google Scholar 

  • Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Martí, L., Policriti, A., García, L. (2002). AppART: An ART Hybrid Stable Learning Neural Network for Universal Function Approximation. In: Abraham, A., Köppen, M. (eds) Hybrid Information Systems. Advances in Soft Computing, vol 14. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1782-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1782-9_9

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-1480-4

  • Online ISBN: 978-3-7908-1782-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics