Skip to main content

Some Graphs Related to Thompson’s Group F

  • Conference paper

Part of the book series: Trends in Mathematics ((TM))

Abstract

The Schreier graphs of Thompson’s group F with respect to the stabilizer of 1/2 and generators x 0 and x 1 , and of its unitary representation in L 2 ([0, 1]) induced by the standard action on the interval [0, 1] are explicitly described. The coamenability of the stabilizers of any finite set of dyadic rational numbers is established. The induced subgraph of the right Cayley graph of the positive monoid of F containing all the vertices of the form x n v, where n ≥ 0 and v is any word over the alphabet {x 0 , x 1 }, is constructed. It is proved that the latter graph is non-amenable.

The author was supported by NSF grants DMS-0600975 and DMS-0456185.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachir Bekka, Pierre de la Harpe, and Alain Valette. Kazhdan’s property (T), volume 11 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2008.

    Google Scholar 

  2. James M. Belk. Thompson’s group F. PhD thesis, Cornell University, 2004.

    Google Scholar 

  3. Kenneth S. Brown. Finiteness properties of groups. In Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985), volume 44, pages 45–75, 1987.

    MATH  Google Scholar 

  4. Matthew G. Brin and Craig C. Squier. Groups of piecewise linear homeomorphisms of the real line. Invent. Math., 79(3):485–498, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  5. José Burillo. Quasi-isometrically embedded subgroups of Thompson’s group F. J. Algebra, 212(1):65–78, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  6. J.W. Cannon, W.J. Floyd, and W.R. Parry. Introductory notes on Richard Thompson’s groups. Enseign. Math. (2), 42(3–4):215–256, 1996.

    MATH  MathSciNet  Google Scholar 

  7. Ingrid Daubechies. Ten lectures on wavelets, volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992.

    Google Scholar 

  8. P. de lya Arp, R.I. Grigorchuk, and T. Chekerini-Silberstaįn. Amenability and paradoxical decompositions for pseudogroups and discrete metric spaces. Tr. Mat. Inst. Steklova, 224 (Algebra. Topol. Differ. Uravn. i ikh Prilozh.):68–111, 1999.

    Google Scholar 

  9. John Donnelly. Ruinous subsets of Richard Thompson’s group F. J. Pure Appl. Algebra, 208(2):733–737, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  10. R.I. Grigorchuk. Growth and amenability of a semigroup and its group of quotients. In Proceedings of the International Symposium on the Semigroup Theory and its Related Fields (Kyoto, 1990), pages 103–108, Matsue, 1990 Shimane Univ.

    Google Scholar 

  11. R.I. Grigorchuk. An example of a finitely presented amenable group that does not belong to the class EG. Mat. Sb., 189(1):79–100, 1998.

    MATH  MathSciNet  Google Scholar 

  12. S.M. Gersten and John R. Stallings, editors. Combinatorial group theory and topology, volume 111 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 1987. Papers from the conference held in Alta, Utah, July 15–18, 1984.

    Google Scholar 

  13. R.I. Grigorchuk and A.M. Stepin. On the amenability of cancellation semi-groups. Vestnik Moskov. Univ. Ser. I Mat. Mekh., (3):12–16, 73, 1998.

    MathSciNet  Google Scholar 

  14. Alfred Haar. Zur Theorie der orthogonalen Funktionensysteme. Math. Ann., 69(3):331–371, 1910.

    Article  MATH  MathSciNet  Google Scholar 

  15. Alexander Yu. Olshanskii and Mark V. Sapir. Non-amenable finitely presented torsion-by-cyclic groups. Publ. Math. Inst. Hautes Études Sci., (96):43–169 (2003), 2002.

    Google Scholar 

  16. Zoran ĽSunić. Tamari lattices, forests and Thompson monoids. European J. Combin., 28(4):1216–1238, 2007.

    Article  MathSciNet  Google Scholar 

  17. Gilbert G. Walter and Xiaoping Shen. Wavelets and other orthogonal systems. Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton, FL, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Basel AG

About this paper

Cite this paper

Savchuk, D. (2010). Some Graphs Related to Thompson’s Group F . In: Bogopolski, O., Bumagin, I., Kharlampovich, O., Ventura, E. (eds) Combinatorial and Geometric Group Theory. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9911-5_12

Download citation

Publish with us

Policies and ethics