Skip to main content

Preclinical Activities of Bortezomib in MM, the Bone Marrow Microenvironment and Pharmacogenomics

  • Chapter
  • First Online:
  • 646 Accesses

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

The intracellular protein degradation system is critical for many cellular processes, including cell cycle regulation. The proteasomes are intracellular protein complexes that degrade polyubiquitinated proteins. Bortezomib (Velcade®) is a boronic acid dipeptide that directly binds to enzymatic complex to block chimotrypsin-like activity of proteasome and is the first FDA-approved proteasome inhibitor for multiple myeloma (MM) treatment. Bortezomib blocks degradation of multi-proteins, including regulators of cell cycle, anti-apoptosis, and inflammation, as well as immune surveillance. In MM cells, bortezomib directly induces cell stress response followed by activation of c-Jun NH2 terminal kinase/stress- activated protein kinase and triggers cell cycle arrest, followed by caspase-dependent apoptosis. Bortezomib also modulates activities of non-MM cellular components, including stromal cells and osteoblasts in the bone marrow milieu. Importantly, combination treatment strategies, including histone deacetylase inhibitors, Akt inhibitor, lenalidomide, heat shock protein 90 inhibitors, and aurora kinase inhibitors demonstrate significant anti-MM activities both in preclinical and clinical studies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Reference

  1. Chauhan D, Catley L, Li G et al (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from Bortezomib. Cancer Cell 8:407–419

    Article  PubMed  CAS  Google Scholar 

  2. Kuhn DJ, Chen Q, Voorhees PM et al (2007) Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 110:3281–3290

    Article  PubMed  CAS  Google Scholar 

  3. Kisselv AF, Goldberg AL (2001) Proteasome inhibitors: from research tools to drug candidates. Chem Biol 21:1–20

    Google Scholar 

  4. Hideshima T, Richardson PG, Anderson KC (2003) Targeting proteasome inhibition in hematologic malignancies. Rev Clin Exp Hematol 7:191–204

    PubMed  CAS  Google Scholar 

  5. Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4:349–360

    Article  PubMed  CAS  Google Scholar 

  6. Hideshima T, Richardson P, Chauhan D et al (2001) The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 61:3071–3076

    PubMed  CAS  Google Scholar 

  7. Jost PJ, Ruland J (2007) Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood 109:2700–2707

    PubMed  CAS  Google Scholar 

  8. Keats JJ, Fonseca R, Chesi M et al (2007) Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12:131–144

    Article  PubMed  CAS  Google Scholar 

  9. Annunziata CM, Davis RE, Demchenko Y et al (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12:115–130

    Article  PubMed  CAS  Google Scholar 

  10. Hideshima T, Chauhan D, Kiziltepe T et al (2009) Biologic sequelae of I{kappa}B kinase (IKK) inhibition in multiple myeloma: therapeutic implications. Blood 113:5228–5236

    Article  PubMed  CAS  Google Scholar 

  11. Baldwin AS Jr (1996) The NF-kB and I kB proteins: new discoveries and insights. Annu Rev Immunol 14:649–683

    Article  PubMed  CAS  Google Scholar 

  12. Beg AA, Baldwin AS Jr (1993) The IkB proteins: multifunctional regulators of Rel NF-kB transcription factors. Genes Dev 7:2064–2070

    Article  PubMed  CAS  Google Scholar 

  13. Zandi E, Chen Y, Karin M (1998) Direct phosphorylation of IkappaB by IKKalpha and IKKbeta: discrimination between free and NF-kappaB-bound substrate. Science 281: 1360–1363

    Article  PubMed  CAS  Google Scholar 

  14. DiDonato JA, Hayakawa M, Rothwarf DM, Zandi E, Karin M (1997) A cytokine-responsive IkB kinase that activates the transcription factor NF-kB. Nature 388:548–554

    Article  PubMed  CAS  Google Scholar 

  15. Hideshima T, Ikeda H, Chauhan D et al (2009) Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 114:1046–1052

    Article  PubMed  CAS  Google Scholar 

  16. Akiyama M, Hideshima T, Hayashi T et al (2002) Cytokines modulate telomerase activity in a human multiple myeloma cell line. Cancer Res 62:3876–3882

    PubMed  CAS  Google Scholar 

  17. Hideshima T, Mitsiades C, Akiyama M et al (2003) Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 101:1530–1534

    Article  PubMed  CAS  Google Scholar 

  18. Hideshima T, Chauhan D, Schlossman RL, Richardson PR, Anderson KC (2001) Role of TNF-a in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20:4519–4527

    Article  PubMed  CAS  Google Scholar 

  19. Mitsiades N, Mitsiades CS, Richardson PG et al (2003) The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood 101:2377–2380

    Article  PubMed  CAS  Google Scholar 

  20. Hideshima T, Chauhan D, Hayashi T et al (2003) Proteasome Inhibitor PS-341 abrogates IL-6 triggered signaling cascades via caspase-dependent downregulation of gp130 in multiple myeloma. Oncogene 22:8386–8393

    Article  PubMed  CAS  Google Scholar 

  21. Lee AH, Iwakoshi NN, Anderson KC, Glimcher LH (2003) Proteasome inhibitors disrupt the unfolded protein response in myeloma cells. Proc Natl Acad Sci USA 100:9946–9951

    Article  PubMed  CAS  Google Scholar 

  22. Gu H, Chen X, Gao G, Dong H (2008) Caspase-2 functions upstream of mitochondria in endoplasmic reticulum stress-induced apoptosis by bortezomib in human myeloma cells. Mol Cancer Ther 7:2298–2307

    Article  PubMed  CAS  Google Scholar 

  23. LeBlanc R, Catley LP, Hideshima T et al (2002) Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 62:4996–5000

    PubMed  CAS  Google Scholar 

  24. Klein B, Zhang XG, Lu XY, Bataille R (1995) Interleukin-6 in human multiple myeloma. Blood 85:863–872

    PubMed  CAS  Google Scholar 

  25. Hideshima T, Podar K, Chauhan D, Anderson KC (2005) Cytokines and signal transduction. Best Pract Res Clin Haematol 18:509–524

    Article  PubMed  CAS  Google Scholar 

  26. Chauhan D, Uchiyama H, Akbarali Y et al (1996) Multiple myeloma cell adhesion-induced interleukin-6 expression in bone marrow stromal cells involves activation of NF-kB. Blood 87:1104–1112

    PubMed  CAS  Google Scholar 

  27. Hideshima T, Chauhan D, Richardson P et al (2002) NF-kB as a therapeutic target in multiple myeloma. J Biol Chem 277:16639–16647

    Article  PubMed  CAS  Google Scholar 

  28. Heider U, Kaiser M, Muller C et al (2006) Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment. Eur J Haematol 77:233–238

    Article  PubMed  CAS  Google Scholar 

  29. Giuliani N, Morandi F, Tagliaferri S et al (2007) The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 110: 334–338

    Article  PubMed  CAS  Google Scholar 

  30. Mukherjee S, Raje N, Schoonmaker JA et al (2008) Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest 118:491–504

    PubMed  CAS  Google Scholar 

  31. Qiang YW, Hu B, Chen Y et al (2009) Bortezomib induces osteoblast differentiation via Wnt-independent activation of beta-catenin/TCF signaling. Blood 113:4319–4330

    Article  PubMed  CAS  Google Scholar 

  32. von Metzler I, Krebbel H, Hecht M et al (2007) Bortezomib inhibits human osteoclastogenesis. Leukemia 21:2025–2034

    Article  Google Scholar 

  33. Vacca A, Ribatti D, Roncali L et al (1994) Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol 87:503–508

    Article  PubMed  CAS  Google Scholar 

  34. Vacca A, Ribatti D, Presta M et al (1999) Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93:3064–3073

    PubMed  CAS  Google Scholar 

  35. Kumar S, Fonseca R, Dispenzieri A et al (2002) Bone marrow angiogenesis in multiple myeloma: effect of therapy. Br J Haematol 119:665–671

    Article  PubMed  CAS  Google Scholar 

  36. Roccaro AM, Hideshima T, Raje N et al (2006) Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res 66:184–191

    Article  PubMed  CAS  Google Scholar 

  37. Mitsiades N, Mitsiades CS, Poulaki V et al (2002) Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 99:14374–14379

    Article  PubMed  CAS  Google Scholar 

  38. Tricot G, Barlogie B, Jagannath S et al (1995) Poor prognosis in multiple myeloma is associated only with partial or complete deletions of chromosome 13 or abnormalities involving 11q and not with other karyotype abnormalities. Blood 86:4250–4256

    PubMed  CAS  Google Scholar 

  39. Shaughnessy J, Tian E, Sawyer J et al (2000) High incidence of chromosome 13 deletion in multiple myeloma detected by multiprobe interphase FISH. Blood 96:1505–1511

    PubMed  CAS  Google Scholar 

  40. Jagannath S, Richardson PG, Sonneveld P et al (2007) Bortezomib appears to overcome the poor prognosis conferred by chromosome 13 deletion in phase 2 and 3 trials. Leukemia 21:151–157

    Article  PubMed  CAS  Google Scholar 

  41. Chang H, Trieu Y, Qi X, Xu W, Stewart KA, Reece D (2007) Bortezomib therapy response is independent of cytogenetic abnormalities in relapsed/refractory multiple myeloma. Leuk Res 31:779–782

    Article  PubMed  CAS  Google Scholar 

  42. Mitsiades N, Mitsiades CS, Richardson PG et al (2003) Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 101:4055–4062

    Article  PubMed  CAS  Google Scholar 

  43. Hideshima T, Bradner JE, Chauhan D, Anderson KC (2005) Intracellular protein degradation and its therapeutic implications. Clin Cancer Res 11:8530–8533

    Article  PubMed  CAS  Google Scholar 

  44. Kawaguchi Y, Kovacs JJ, McLaurin A, Vance JM, Ito A, Yao TP (2003) The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress. Cell 115:727–738

    Article  PubMed  CAS  Google Scholar 

  45. Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL (2003) Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA 100:4389–4394

    Article  PubMed  CAS  Google Scholar 

  46. Hideshima H, Bradner JE, Wong J et al (2005) Small molecule inhibition of proteasome and aggresome function induces synergistic anti-tumor activity in multiple myeloma. Proc Natl Acad Sci USA 102:8567–8572

    Article  PubMed  CAS  Google Scholar 

  47. Catley L, Weisberg E, Kiziltepe T et al (2006) Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 108:3441–3449

    Article  PubMed  CAS  Google Scholar 

  48. Mitsiades CS, Mitsiades NS, McMullan CJ et al (2004) Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 101:540–545

    Article  PubMed  CAS  Google Scholar 

  49. Pei XY, Dai Y, Grant S (2004) Synergistic induction of oxidative injury and apoptosis in human multiple myeloma cells by the proteasome inhibitor bortezomib and histone deacetylase inhibitors. Clin Cancer Res 10:3839–3852

    Article  PubMed  CAS  Google Scholar 

  50. Feng R, Oton A, Mapara MY, Anderson G, Belani C, Lentzsch S (2007) The histone deacetylase inhibitor, PXD101, potentiates bortezomib-induced anti-multiple myeloma effect by induction of oxidative stress and DNA damage. Br J Haematol 139:385–397

    Article  PubMed  CAS  Google Scholar 

  51. Deleu S, Lemaire M, Arts J et al (2009) Bortezomib alone or in combination with the histone deacetylase inhibitor JNJ-26481585: effect on myeloma bone disease in the 5T2MM murine model of myeloma. Cancer Res 69:5307–5311

    Article  PubMed  CAS  Google Scholar 

  52. Hideshima T, Catley L, Yasui H et al (2006) Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 107:4053–4062

    Article  PubMed  CAS  Google Scholar 

  53. Hideshima T, Nakamura N, Chauhan D, Anderson KC (2001) Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20:5991–6000

    Article  PubMed  CAS  Google Scholar 

  54. Hideshima T, Catley L, Raje N et al (2007) Inhibition of Akt induces significant downregulation of survivin and cytotoxicity in human multiple myeloma cells. Br J Haematol 138:783–791

    Article  PubMed  CAS  Google Scholar 

  55. Ogata A, Chauhan D, Urashima M, Teoh G, Treon SP, Anderson KC (1997) Blockade of mitogen-activated protein kinase cascade signaling in interleukin-6 independent multiple myeloma cells. Clin Cancer Res 3:1017–1022

    PubMed  CAS  Google Scholar 

  56. Mitsiades CS, Mitsiades N, Poulaki V, Akiyama M, Treon SP, Anderson KC (2001) The HSP90 molecular chaperone as a novel therapeutic target in hematologic malignancies. Blood 98:377a

    Article  Google Scholar 

  57. Mitsiades CS, Mitsiades NS, McMullan CJ et al (2006) Antimyeloma activity of heat shock protein-90 inhibition. Blood 107:1092–1100

    Article  PubMed  CAS  Google Scholar 

  58. Stuhmer T, Zollinger A, Siegmund D et al (2008) Signalling profile and antitumour activity of the novel Hsp90 inhibitor NVP-AUY922 in multiple myeloma. Leukemia 22:1604–1612

    Article  PubMed  CAS  Google Scholar 

  59. Okawa Y, Hideshima T, Steed P et al (2009) SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematological tumors by abrogating signaling via Akt and ERK. Blood 113(4):846–855

    Article  PubMed  CAS  Google Scholar 

  60. Mimnaugh EG, Xu W, Vos M et al (2004) Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity. Mol Cancer Ther 3:551–566

    PubMed  CAS  Google Scholar 

  61. Davenport EL, Moore HE, Dunlop AS et al (2007) Heat shock protein inhibition is associated with activation of the unfolded protein response (UPR) pathway in myeloma plasma cells. Blood 110(7):2641–2649

    Article  PubMed  CAS  Google Scholar 

  62. Hideshima T, Chauhan D, Shima Y et al (2000) Thalidomide and its analogues overcome drug resistance of human multiple myeloma cells to conventional therapy. Blood 96:2943–2950

    PubMed  CAS  Google Scholar 

  63. Davies FE, Raje N, Hideshima T et al (2001) Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98:210–216

    Article  PubMed  CAS  Google Scholar 

  64. Mitsiades N, Mitsiades CS, Poulaki V et al (2002) Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99:4525–4530

    Article  PubMed  CAS  Google Scholar 

  65. Hayashi T, Hideshima T, Akiyama M et al (2005) Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br J Haematol 128: 192–203

    Article  PubMed  CAS  Google Scholar 

  66. Richardson PG, Schlossman RL, Weller E et al (2002) Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 100:3063–3067

    Article  PubMed  CAS  Google Scholar 

  67. Richardson PG, Blood E, Mitsiades CS et al (2006) A randomized phase 2 study of lenalidomide therapy for patients with relapsed or relapsed and refractory multiple myeloma. Blood 108:3458–3464

    Article  PubMed  CAS  Google Scholar 

  68. Richardson P, Jagannath S, Hussein M et al (2009) Safety and efficacy of single-agent lenalidomide in patients with relapsed and refractory multiple myeloma. Blood 114:772–778

    Article  PubMed  CAS  Google Scholar 

  69. Dimopoulos M, Spencer A, Attal M et al (2007) Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N Engl J Med 357:2123–2132

    Article  PubMed  CAS  Google Scholar 

  70. Weber DM, Chen C, Niesvizky R et al (2007) Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N Engl J Med 357:2133–2142

    Article  PubMed  CAS  Google Scholar 

  71. Richardson P, Jagannath S, Jakubowiak A et al (2008) Lenalidomide, bortezomib, and dexamethasone in patients with relapsed or relapsed/refractory multiple myeloma (MM): encouraging response rates and tolerability with correlation of outcome and adverse cytogenetics in a phase II study. Blood 112:614

    Google Scholar 

  72. Richardson P, Jagannath S, Jakubowiak A et al (2008) Lenalidomide, bortezomib, and dexamethasone in patients with newly diagnosed multiple myeloma: encouraging efficacy in high risk groups with updated results of a phase I/II study. Blood 112:41

    Google Scholar 

  73. Shi Y, Reiman T, Li W et al (2007) Targeting aurora kinases as therapy in multiple myeloma. Blood 109:3915–3921

    Article  PubMed  CAS  Google Scholar 

  74. Chng WJ, Braggio E, Mulligan G et al (2008) The centrosome index is a powerful prognostic marker in myeloma and identifies a cohort of patients that might benefit from aurora kinase inhibition. Blood 111:1603–1609

    Article  PubMed  CAS  Google Scholar 

  75. Hose D, Reme T, Meissner T et al (2009) Inhibition of aurora kinases for tailored risk-adapted treatment of multiple myeloma. Blood 113:4331–4340

    Article  PubMed  CAS  Google Scholar 

  76. Dutta-Simmons J, Zhang Y, Gorgun G et al (2009) Aurora kinase A is a target of Wnt/{beta}-catenin involved in multiple myeloma disease progression. Blood 114(3):2699–2708

    Article  PubMed  CAS  Google Scholar 

  77. Yu C, Rahmani M, Dent P, Grant S (2004) The hierarchical relationship between MAPK signaling and ROS generation in human leukemia cells undergoing apoptosis in response to the proteasome inhibitor bortezomib. Exp Cell Res 295:555–566

    Article  PubMed  CAS  Google Scholar 

  78. Zou W, Yue P, Lin N et al (2006) Vitamin C inactivates the proteasome inhibitor PS-341 in human cancer cells. Clin Cancer Res 12:273–280

    Article  PubMed  CAS  Google Scholar 

  79. Perrone G, Hideshima T, Ikeda H et al (2009) Ascorbic acid inhibits antitumor activity of bortezomib in vivo. Leukemia 23(9):1679–1686

    Article  PubMed  CAS  Google Scholar 

  80. Golden EB, Lam PY, Kardosh A et al (2009) Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood 113: 5927–5937

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teru Hideshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Hideshima, T., Richardson, P.G., Anderson, K.C. (2011). Preclinical Activities of Bortezomib in MM, the Bone Marrow Microenvironment and Pharmacogenomics. In: Ghobrial, I., Richardson, P., Anderson, K. (eds) Bortezomib in the Treatment of Multiple Myeloma. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-7643-8948-2_2

Download citation

Publish with us

Policies and ethics