Skip to main content

Enzymology of Influenza Virus Sialidase

  • Chapter
  • First Online:
Influenza Virus Sialidase - A Drug Discovery Target

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Influenza virus sialidase plays a key role in the infectious lifecycle of the virus. This chapter provides a discussion of the tools, such as linear free energy relationships and kinetic isotope effects, used in exploring enzyme mechanisms and an introduction to mechanistic aspects, including transition state analysis and whether the intermediate that follows the glycosylation TS, in retaining glycosidases, is an oxacarbenium ion or is covalently linked to the enzyme. A general discussion of microbial sialidase catalysis is provided, as well as an overview of the catalytic mechanism of influenza virus sialidases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saito M, Yu RK (1995) Biochemistry and function of sialidases. In: Rosenberg A (ed) Biology of the sialic acids. Plenum Press, New York, pp 261–313

    Google Scholar 

  2. Nelson J, Couceiro SS, Paulson JC, Baum LG (1993) Influenza-virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium – the role of the host-cell in selection of hemagglutinin receptor specificity. Virus Res 29:155–165

    Article  CAS  Google Scholar 

  3. Wilson JC, von Itzstein M (2003) Recent strategies in the search for new anti-influenza therapies. Curr Drug Targets 4:389–408

    Article  PubMed  CAS  Google Scholar 

  4. de Barros JF, Alviano DS, da Silva MH, Wigg MD, Alviano CS, Schauer R, Couceiro J (2003) Characterization of sialidase from an influenza A (H3N2) virus strain: kinetic parameters and substrate specificity. Intervirology 46:199–206

    Article  Google Scholar 

  5. Wilson JC, Angus DI, von Itzstein M (1995) 1H NMR evidence that Salmonella typhimurium sialidase hydrolyzes sialosides with overall retention of configuration. J Am Chem Soc 117:4214–4217

    Article  CAS  Google Scholar 

  6. Davies G, Sinnott ML, Withers SG (1998) Glycosyl Transfer. In: Sinnott ML (ed) Comprehensive biological catalysis. Academic, San Diego, CA, pp 119–209

    Google Scholar 

  7. Friebolin H, Supp M, Brossmer R, Keilich G, Ziegler D (1980) 1 H-NMR investigations on the mutarotation of N-acetyl-D-neuraminic acid. Angew Chem Int Ed Engl 19:208–209

    Article  Google Scholar 

  8. Friebolin H, Kunzelmann P, Supp M, Brossmer R, Keilich G, Ziegler D (1981) 1 H-NMR-spekroskopische untersuchungen zur mutarotation der N-acetyl-D-neuraminsäure - pH-abhängigkeit der mutarotationsgeschwindigkeit. Tetrahedron Lett 22:1383–1386

    Article  CAS  Google Scholar 

  9. Klepach T, Carmichael I, Serianni AS (2008) 13C-Labeled N-acetyl-neuraminic acid in aqueous solution: Detection and quantification of acyclic keto, keto hydrate, and enol forms by 13C NMR spectroscopy. J Am Chem Soc 130:11892–11900

    Article  PubMed  CAS  Google Scholar 

  10. Stummeyer K, Dickmanns A, Muhlenhoff M, Gerardy-Schahn R, Ficner R (2005) Crystal structure of the polysialic acid-degrading endosialidase of bacteriophage K1F. Nat Struct Mol Biol 12:90–96

    Article  PubMed  CAS  Google Scholar 

  11. Pelkonen S, Pelkonen J, Finne J (1989) Common cleavage pattern of polysialic acid by bacteriophage endosialidases of different properties and origins. J Virol 63:4409–4416

    PubMed  CAS  Google Scholar 

  12. Morley TJ, Willis LM, Whitfield C, Wakarchuk WW, Withers SG (2009) A new sialidase mechanism: Bacteriophage K1F endosialidase is an inverting glycosidase. J Biol Chem 284:17404–17410

    Article  PubMed  CAS  Google Scholar 

  13. Schauer R (1985) Sialic acids and their role as biological masks. Trend Biochem Sci 10:357–360

    Article  CAS  Google Scholar 

  14. Miyagi T, Kato K, Ueno S, Wada T (2004) Aberrant expression of sialidase in cancer. Trends Glycosci Glycotechnol 16:371–381

    Article  CAS  Google Scholar 

  15. Corfield T (1992) Bacterial sialidases: roles in pathogenicity and nutrition. Glycobiology 2:509–521

    Article  PubMed  CAS  Google Scholar 

  16. Taylor G (1996) Sialidases: Structures, biological significance and therapeutic potential. Curr Opin Struct Biol 6:830–837

    Article  PubMed  CAS  Google Scholar 

  17. Klenk H-D, Rott R (1988) The molecular biology of influenza virus pathogenicity. In: Maramorosch K, Murphy FA, Shatkin AJ (eds) Advances in virus research. Academic, New York, pp 247–281

    Google Scholar 

  18. Palese P, Tobita K, Ueda M, Compans RW (1974) Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61:397–410

    Article  PubMed  CAS  Google Scholar 

  19. von Itzstein M (2007) The war against influenza: discovery and development of sialidase inhibitors. Nat Rev Drug Discov 6:967–974

    Article  Google Scholar 

  20. Islam T, von Itzstein M (2007) Anti-influenza drug discovery: Are we ready for the next pandemic? Adv Carbohydr Chem Biochem 61:293–352

    Article  PubMed  CAS  Google Scholar 

  21. Michaelis L, Menten ML (1913) Die kinetik der invertinwirkung. Biochem Zeit 49:333–369

    CAS  Google Scholar 

  22. Fersht A (1985) Enzyme structure and mechanism, 2nd edn. W.H. Freeman, New York

    Google Scholar 

  23. Hudson CS (1907) The catalysis by acids and bases of the mutarotation of glucose. J Am Chem Soc 29:1571–1576

    Article  Google Scholar 

  24. Lewis BE, Choytun N, Schramm VL, Bennet AJ (2006) Transition states for glucopyranose interconversion. J Am Chem Soc 128:5049–5058

    Article  PubMed  CAS  Google Scholar 

  25. Severi E, Muller A, Potts JR, Leech A, Williamson D, Wilson KS, Thomas GH (2008) Sialic acid mutarotation is catalyzed by the Escherichia coli beta-propeller protein YjhT. J Biol Chem 283:4841–4849

    Article  PubMed  CAS  Google Scholar 

  26. Albery WJ, Knowles JR (1976) Evolution of enzyme function and development of catalytic efficiency. Biochemistry 15:5631–5640

    Article  PubMed  CAS  Google Scholar 

  27. Sinnott M (1998) Comprehensive biological catalysis: A mechanistic reference. Academic, San Diego,CA

    Google Scholar 

  28. Sinnott ML (2007) Carbohydrate chemistry and biochemistry: structure and mechanism. RSC Publishing, Cambridge

    Google Scholar 

  29. Ashwell M, Guo X, Sinnott ML (1992) Pathways for the hydrolysis of glycosides of N-acetylneuraminic acid. J Am Chem Soc 114:10158–10166

    Article  CAS  Google Scholar 

  30. Dookhun V, Bennet AJ (2005) Unexpected stability of aryl β-N-acetylneuraminides in neutral solution: Biological implications for sialyl transfer reactions. J Am Chem Soc 127:7458–7465

    Article  PubMed  CAS  Google Scholar 

  31. Chou DTH, Watson JN, Scholte AA, Borgford TJ, Bennet AJ (2000) Effect of neutral pyridine leaving groups on the mechanisms of influenza type A viral sialidase-catalyzed and the spontaneous hydrolysis reactions of α-D-N-acetylneuraminides. J Am Chem Soc 122:8357–8364

    Article  CAS  Google Scholar 

  32. Melander LCS, Saunders WHJ (1980) Reaction rates of isotopic molecules. Wiley, New York

    Google Scholar 

  33. Kohen A, Limbach H-H (2006) Isotope effects in chemistry and biology. Taylor & Francis, Boca Raton, FL

    Google Scholar 

  34. Namchuk MN, McCarter JD, Becalski A, Andrews T, Withers SG (2000) The role of sugar substituents in glycoside hydrolysis. J Am Chem Soc 122:1270–1277

    Article  CAS  Google Scholar 

  35. Knoll TL, Bennet AJ (2004) Aqueous methanolysis of an α-D-N-acetylneuraminyl pyridinium zwitterion: Solvolysis occurs with no intramolecular participation of the anomeric carboxylate group. J Phys Org Chem 17:478–482

    Article  CAS  Google Scholar 

  36. Horenstein BA, Bruner M (1996) Acid-catalyzed solvolysis of CMP-N-acetyl neuraminate: evidence for a sialyl cation with a finite lifetime. J Am Chem Soc 118:10371–10379

    Article  CAS  Google Scholar 

  37. Horenstein BA, Bruner M (1998) The N-acetyl neuraminyl oxecarbenium ion is an intermediate in the presence of anionic nucleophiles. J Am Chem Soc 120:1357–1362

    Article  CAS  Google Scholar 

  38. Amyes TL, Jencks WP (1989) Lifetimes of oxocarbenium ions in aqueous solution from common ion inhibition of the solvolysis of α-azido ethers by added azide ion. J Am Chem Soc 111:7888–7900

    Article  CAS  Google Scholar 

  39. Huang X, Surry C, Hiebert T, Bennet AJ (1995) The hydrolysis of 2-deoxy-β-D-glucopyranosyl pyridinium salts. J Am Chem Soc 117:10614–10621

    Article  CAS  Google Scholar 

  40. Vimr ER (1994) Microbial sialidases: does bigger always mean better? Trends Microbiol 2:271–277

    Article  PubMed  CAS  Google Scholar 

  41. Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316:695–696

    PubMed  Google Scholar 

  42. Lentz MR, Webster RG, Air GM (1987) Site-directed mutation of the active site of influenza neuraminidase and implications for the catalytic mechanism. Biochemistry 26:5351–5358

    Article  PubMed  CAS  Google Scholar 

  43. Varghese JN, Colman PM (1991) Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 A resolution. J Mol Biol 221:473–486

    Article  PubMed  CAS  Google Scholar 

  44. Varghese JN, McKimm-Breschkin JL, Caldwell JB, Kortt AA, Colman PM (1992) The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins: Struct Funct Genet 14:327–332

    Article  CAS  Google Scholar 

  45. Colman PM, Varghese JN, Laver WG (1983) Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 303:41–44

    Article  PubMed  CAS  Google Scholar 

  46. Koshland DE Jr (1953) Stereochemistry and the mechanism of enzymic reactions. Biol Rev Camb Philos Soc 28:416–436

    Article  CAS  Google Scholar 

  47. Vocadlo DJ, Davies GJ (2008) Mechanistic insights into glycosidase chemistry. Curr Opin Chem Biol 12:539–555

    Article  PubMed  CAS  Google Scholar 

  48. Davies GJ, Ducros VMA, Varrot A, Zechel DL (2003) Mapping the conformational itinerary of β-glycosidases by X-ray crystallography. Biochem Soc Trans 31:523–527

    Article  PubMed  CAS  Google Scholar 

  49. Davies GJ, Gloster TM, Henrissat B (2005) Recent structural insights into the expanding world of carbohydrate-active enzymes. Curr Opin Struct Biol 15:637–645

    Article  PubMed  CAS  Google Scholar 

  50. Guo X, Laver WG, Vimr E, Sinnott ML (1994) Catalysis by two sialidases with the same protein fold but different stereochemical courses: a mechanistic comparison of the enzymes from influenza A virus and Salmonella typhimurium. J Am Chem Soc 116:5572–5578

    Article  CAS  Google Scholar 

  51. Narine AA, Watson JN, Bennet AJ (2006) Mechanistic requirements for efficient enzyme-catalyzed hydrolysis of thiosialosides. Biochemistry 45:9319–9326

    Article  PubMed  CAS  Google Scholar 

  52. Watson JN, Dookhun V, Borgford TJ, Bennet AJ (2003) Mutagenesis of the conserved active-site tyrosine changes a retaining sialidase into an inverting sialidase. Biochemistry 42:12682–12690

    Article  PubMed  CAS  Google Scholar 

  53. Chong AKJ, Pegg MS, Taylor NR, von Itzstein M (1992) Evidence for a sialosyl cation transition-state complex in the reactivity of sialidase from influenza virus. Eur J Biochem 207:335–343

    Article  PubMed  CAS  Google Scholar 

  54. Barnes JA, Williams IH (1996) Quantum mechanical/molecular mechanical approaches to transition state structure: mechanism of sialidase action. Biochem Soc Trans 24:263–268

    PubMed  CAS  Google Scholar 

  55. Thomas A, Jourand D, Bret C, Amara P, Field MJ (1999) Is there a covalent intermediate in the viral neuraminidase reaction? A hybrid potential free-energy study. J Am Chem Soc 121:9693–9702

    Article  CAS  Google Scholar 

  56. Mader MM, Bartlett PA (1997) Binding energy and catalysis: the implications for transition-state analogs and catalytic antibodies. Chem Rev 97:1281–1301

    Article  PubMed  CAS  Google Scholar 

  57. Withers SG, Rupitz K, Street IP (1988) 2-Deoxy-2-fluoro-D-glycosyl fluorides. A new class of specific mechanism-based glycosidase inhibitors. J Biol Chem 263:7929–7932

    PubMed  CAS  Google Scholar 

  58. Watts AG, Damager I, Amaya ML, Buschiazzo A, Alzari P, Frasch AC, Withers SG (2003) Trypanosoma cruzi trans-sialidase operates through a covalent sialyl-enzyme intermediate: tyrosine is the catalytic nucleophile. J Am Chem Soc 125:7532–7533

    Article  PubMed  CAS  Google Scholar 

  59. Colli W (1993) Trans-sialidase – a unique enzyme-activity discovered in the protozoan Trypanosoma-cruzi. FASEB J 7:1257–1264

    PubMed  CAS  Google Scholar 

  60. Parodi AJ, Pollevick GD, Mautner M, Buschiazzo A, Sanchez DO, Frasch ACC (1992) Identification of the gene(s) coding for the trans-sialidase of Trypanosoma cruzi. EMBO J 11:1705–1710

    PubMed  CAS  Google Scholar 

  61. Amaya MF, Watts AG, Damager T, Wehenkel A, Nguyen T, Buschiazzo A, Paris G, Frasch AC, Withers SG, Alzari PM (2004) Structural insights into the catalytic mechanism of Trypanosoma cruzi trans-sialidase. Structure 12:775–784

    Article  PubMed  CAS  Google Scholar 

  62. Watts AG, Oppezzo P, Withers SG, Alzari PM, Buschiazzo A (2006) Structural and kinetic analysis of two covalent sialosyl-enzyme intermediates on Trypanosoma rangeli sialidase. J Biol Chem 281:4149–4155

    Article  PubMed  CAS  Google Scholar 

  63. Newstead SL, Potter JA, Wilson JC, Xu GG, Chien CH, Watts AG, Withers SG, Taylor GL (2008) The structure of Clostridium perfringens NanI sialidase and its catalytic intermediates. J Biol Chem 283:9080–9088

    Article  PubMed  CAS  Google Scholar 

  64. Newstead S, Watson JN, Knoll TL, Bennet AJ, Taylor G (2005) Structure and mechanism of action of an inverting mutant sialidase. Biochemistry 44:9117–9122

    Article  PubMed  CAS  Google Scholar 

  65. Bennet AJ, Kitos TE (2002) Mechanisms of glycopyranosyl and 5-thioglycopyranosyl transfer reactions in solution. J Chem Soc Perkin Trans 2:1207–1222

    Google Scholar 

  66. Jencks WP (1980) When Is an intermediate not an intermediate? Enforced mechanisms of general acid-base catalyzed, carbocation, carbanion and ligand exchange reactions. Acc Chem Res 13:161–169

    Article  CAS  Google Scholar 

  67. Yang J, Schenkman S, Horenstein BA (2000) Primary 13C and beta-secondary 2H KIEs for trans-sialidase. A snapshot of nucleophilic participation during catalysis. Biochemistry 39:5902–5910

    Article  PubMed  CAS  Google Scholar 

  68. Crennell SJ, Garman EF, Philippon C, Vasella A, Laver WG, Vimr ER, Taylor GL (1996) The structures of Salmonella typhimurium LT2 neuraminidase and its complexes with three inhibitors at high resolution. J Mol Biol 259:264–280

    Article  PubMed  CAS  Google Scholar 

  69. Ghate AA, Air GM (1998) Site-directed mutagenesis of catalytic residues of influenza virus neuraminidase as an aid to drug design. Eur J Biochem 58:320–331

    Article  Google Scholar 

  70. Kleineidam RG, Kruse S, Roggentin P, Schauer R (2001) Elucidation of the role of functional amino acid residues of the small sialidase from clostridium perfringens by site-directed mutagenesis. Biol Chem 382:313–319

    Article  PubMed  CAS  Google Scholar 

  71. Wang Y, Yamaguchi K, Shimada Y, Zhao XJ, Miyagi T (2001) Site-directed mutagenesis of human membrane-associated ganglioside sialidase – Identification of amino-acid residues contributing to substrate specificity. Eur J Biochem 268:2201–2208

    Article  PubMed  CAS  Google Scholar 

  72. Watson JN, Newstead S, Narine A, Taylor G, Bennet AJ (2005) Two nucleophilic mutants of the Micromonospora viridifaciens sialidase operate with retention of configuration via two different mechanisms. ChemBioChem 6:1999–2004

    Article  PubMed  CAS  Google Scholar 

  73. Chien CH, Shann YJ, Sheu SY (1996) Site-directed mutations of the catalytic and conserved amino acids of the neuraminidase gene, nanH, of Clostridium perfringens ATCC 10543. Enzyme Microb Technol 19:267–276

    Article  PubMed  CAS  Google Scholar 

  74. Wang QP, Graham RW, Trimbur D, Warren RAJ, Withers SG (1994) Changing enzymatic-reaction mechanisms by mutagenesis - conversion of a retaining glucosidase to an inverting enzyme. J Am Chem Soc 116:11594–11595

    Article  CAS  Google Scholar 

  75. Watson JN, Newstead S, Dookhun V, Taylor G, Bennet AJ (2004) Contribution of the active site aspartic acid to catalysis in the bacterial neuraminidase from Micromonospora viridifaciens. FEBS Lett 577:265–269

    Article  PubMed  CAS  Google Scholar 

  76. Guo X, Sinnott ML (1993) A kinetic-isotope-effect study of catalysis by Vibrio cholerae neuraminidase. Biochem J 294:653–656

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Bennet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Chan, J., Bennet, A.J. (2012). Enzymology of Influenza Virus Sialidase. In: von Itzstein, M. (eds) Influenza Virus Sialidase - A Drug Discovery Target. Milestones in Drug Therapy. Springer, Basel. https://doi.org/10.1007/978-3-7643-8927-7_3

Download citation

Publish with us

Policies and ethics