Skip to main content

Homogenenous Multitype Fragmentations

  • Chapter

Part of the book series: Progress in Probability ((PRPR,volume 60))

Abstract

A homogeneous mass-fragmentation, as it has been defined in [6], describes the evolution of the collection of masses of fragments of an object which breaks down into pieces as time passes. Here, we show that this model can be enriched by considering also the types of the fragments, where a type may represent, for instance, a geometrical shape, and can take finitely many values. In this setting, the dynamics of a randomly tagged fragment play a crucial role in the analysis of the fragmentation. They are determined by a Markov additive process whose distribution depends explicitly on the characteristics of the fragmentation. As applications, we make explicit the connection with multitype branching random walks, and obtain multitype analogs of the pathwise central limit theorem and large deviation estimates for the empirical distribution of fragments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asmussen, S. (2003). Applied Probability and Queues. Second edition. Applications of Mathematics. Stochastic Modelling and Applied Probability. Springer-Verlag, New York.

    MATH  Google Scholar 

  2. Barral, J. (2001). Generalized vector multiplicative cascades. Adv. in Appl. Probab. 33, 874–895.

    Article  MATH  MathSciNet  Google Scholar 

  3. Berestycki, J. (2002). Ranked fragmentations. ESAIM. Probabilités et Statistique 6, 157–176. Available via http://www.edpsciences.org/ps/OnlinePSbis.html

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertoin, J. (2003). The asymptotic behavior of fragmentation processes. J. Euro. Math. Soc. 5, 395–416.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bertoin, J. (2006). Some aspects of a random fragmentation model. Stochastic Process. Appl. 116, 345–369.

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertoin, J. (2006). Random Fragmentation and Coagulation Processes. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  7. Bertoin, J. and Rouault, A. (2005). Discretization methods for homogeneous fragmentations. J. London Math. Soc. 72, 91–109.

    Article  MATH  MathSciNet  Google Scholar 

  8. Biggins, J.D. (1977). Martingale convergence in the branching random walk. J. Appl. Probability 14, no. 1, 25–37.

    Article  MATH  MathSciNet  Google Scholar 

  9. Biggins, J.D. and Kyprianou, A.E. (2004). Measure change in multitype branching. Adv. Appl. Probab. 36, 544–581.

    Article  MATH  MathSciNet  Google Scholar 

  10. Biggins, J.D. and Rahimzadeh Sani, A. (2005). Convergence results on multitype, multivariate branching random walks. Adv. Appl. Probab. 37, 681–705.

    Article  MATH  MathSciNet  Google Scholar 

  11. Dong, R., Gnedin, A., and Pitman, J. (2006). Exchangeable partitions derived from Markovian coalescents. Preprint available via: http://arxiv.org/abs/math.PR/0603745

    Google Scholar 

  12. Haas, B., Miermont, G., Pitman, J., and Winkel, M. (2006). Continuum tree asymptotics of discrete fragmentations and applications to phylogenetic models. Preprint available via http://arxiv.org/abs/math.PR/0604350

    Google Scholar 

  13. Kingman, J.F.C. (1982). The coalescent. Stochastic Process. Appl. 13, 235–248.

    Article  MATH  MathSciNet  Google Scholar 

  14. Kolmogoroff, A.N. (1941). Über das logarithmisch normale Verteilungsgesetz der Dimensionen der Teilchen bei Zerstückelung. C. R. (Doklady) Acad. Sci. URSS 31, 99–101.

    MathSciNet  Google Scholar 

  15. Pitman, J. (1999). Coalescents with multiple collisions. Ann. Probab. 27, 1870–1902.

    Article  MATH  MathSciNet  Google Scholar 

  16. Seneta, E. (1973). Non-Negative Matrices. An Introduction to Theory and Applications. Halsted Press, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Bertoin, J. (2008). Homogenenous Multitype Fragmentations. In: Sidoravicius, V., Vares, M.E. (eds) In and Out of Equilibrium 2. Progress in Probability, vol 60. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8786-0_8

Download citation

Publish with us

Policies and ethics