Skip to main content

Interactive Visualization to Advance Earthquake Simulation

  • Chapter
Earthquakes: Simulations, Sources and Tsunamis

Abstract

The geological seiences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth’s surface and interior. Virtual mapping tools allow virtual “field studies” in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method’s strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bawden, G. W., Kayen, R. E., Silver, M. H., Brandt, J. T., and Collins, B. (2004), Evaluating Tripod Lidar as an earthquake response tool. EOS, Trans. AGU, Fall Meeting 2004, 2004AGUFM.S51C0170B.

    Google Scholar 

  • Bernardin, T., Cowgill, E., Gold, R. D., Hamann, B., Kreylos, O., and Schmitt, A. (2006), Interactive mapping on 3D terrain models. Geochem., Geophy., Geosystems 7, Q10013, DOI 10.1029/2006GC001335.

    Google Scholar 

  • Billen, M. I., Gurnis, M., and Simons, M. (2003), Multiscale dynamic models of the Tonga-Kermadec subduction zone., Geophys. J. Int. 153, 359–388.

    Article  Google Scholar 

  • Billen, M. I., Kreylos, O., Kellogg, L. H., Hamann, B., Staadt, O., Sumner, D. Y., and Jadamec, M. (2006), Study of 3D Visualization Software for Geo-Science Applications, KeckCAVES Technical Report TR06-01.

    Google Scholar 

  • Brocher, T. M., Fuis, G. S., Fisher, M. A., Plafker, G., and Moses, M. J. (1994), Mapping the megathrust beneath the northern Gulf of Alaska using wide-angle seismic data, J. Geophy. Res. 99, 11,663–11,685.

    Article  Google Scholar 

  • Butler, D. (2006), Virtual globes: The web-wide world, Nature 439, 776–778, doi:10.1038/439776a.

    Article  Google Scholar 

  • Cabral, B., Cam, N., and Foran, J., Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In: Proc. 1994 Symp. Volume Visualization (ACM Press, New York, New York, 1994), pp. 91–98.

    Chapter  Google Scholar 

  • Carlson, W. D. (2006), Three-dimensional imaging of earth and planetary materials. Earth Planet. Sci. Lett. 249, 133–147.

    Article  Google Scholar 

  • Cohen, R. E., ed., High-Performance Computing Requirements for the Computational Solid Earth Sciences, 96 pp. (http://www.geo-prose.com/computational_SES.html. 2005).

    Google Scholar 

  • Doser, D. I., Veilleux, A. M., and Velasquez, M. (1999), Seismicity of the Prince William Sound region for over thirty years following the 1964 Great Alaskan Earthquake, Pure Appl. Geophys. 154, 593–632.

    Article  Google Scholar 

  • Erlebacher, G., Yuen, D. A., and Dubuffet, F. (2001), Current trends and demands in visualization in the geosciences, Electronic Geosciences. ISSN 1436-2511 DOI 10.1007/s10069-001-1019-y.

    Google Scholar 

  • Fischer, K. M., Parmentier, E. M., and Stine, A. R. (2000) Modeling anisotropy and plate-driven flow in the Tonga subduction zone back are, J. Geophys. Res. 105(B7), 16181–16191.

    Article  Google Scholar 

  • Foster, I. (2006), 2020 Computing: A two-way street to science’s future, Nature 440, 419, doi:10.1038/440419a.

    Article  Google Scholar 

  • Gudmundsson, O. and Sambridge, M. (1998) A regionalized upper mantle (RUM) seismic model, J. Geophys. Res. 103, 7121–7136.

    Article  Google Scholar 

  • Jadamec, M. and Billen, M. I. (2006), Influence of slab geometry on diffuse plate boundary deformation: 3D numerical models of the plate boundary corner in southern Alaska. Eos Trans. AGU 87(52), Fall Meet. Suppl., Abstract T23B-0491.

    Google Scholar 

  • Kadlec, B. J., Yuen, D. A., and Erlebacher, G. (2006), Visualization and analysis of multi-terabyte geophysical data sets in an interactive setting with remote webcam capabilities, Pure Appl. Geophys. (Still in press).

    Google Scholar 

  • Kreylos, O. (2006), Environment-Independent VR Development, Keck CAVES Technical Report TR06-03 pp.

    Google Scholar 

  • Kreylos, O., Bawden, G. W., Bernardin, T., Billen, M. I., Cowgill, E. S., Gold, R. D., Hamann, B., Jadamec, M., Kellogg, L. H., Staadt, O. G., and Summer, D. Y. (2006), Enabling scientific workflows in virtual reality. In: (Hong Wong, K., Baciu, G. and Bao, H., eds.), Proc. ACM SIGGRAPH Interna. Conf. Virtual Reality Continuum and Its Applications, 2006 (VRCIA 2006) (ACM Press, New York, New York, 2006) pp. 155–162.

    Google Scholar 

  • LaMar, E. C., Hamann, B., and Joy, K. I. (1999), Multiresolution techniques for interactive texture-based volume visualization. In: (Ebert, D.S., Gross, M. and Hamann, B., eds.), IEEE Visualization ’99, IEEE Comp. Soc. Press, Los Alamitos, California, pp. 355–361.

    Google Scholar 

  • Mankar et al. (2006).

    Google Scholar 

  • Max, N. (1995), Optical models for direct volume rendering. In: IEEE Transactions on Visualization and Computer Graphics 1, 99–108.

    Article  Google Scholar 

  • Miller, M. S. and Kennett, B. L. N. (2006), Evolution of mantle structure beneath the northwest Pacific: Evidence from seismic tomography and paleogeographic reconstructions, Tectonics 25, TC4002.

    Google Scholar 

  • Miller, M. S., Gorbatov, A. and Kennett, B. L. N. (2006), Three-dimensional visualization of a near-vertical slab tear beneath the southern Mariana arc, Geochem. Geophys. Geosystems 7, Q06012.

    Google Scholar 

  • McNamara, A. and S. Zhong (2005), Thermochemical structures beneath Africa and the Pacific, Nature 437, 1136–1139.

    Article  Google Scholar 

  • Moresi, L. and Parsons, B. (1995), Interpreting gravity, geoid, and topography for convection with temperature dependent viscosity: Application to surface features on Venus, J. Geophys. Res. 100, 21155–21171.

    Article  Google Scholar 

  • Nourbakhsh, I., Sargent, R., Wright, A., Cramer, K., McClendon, B. and Jones, M. (2006), Mapping disaster zones, Nature 439, 787–788, doi:10.1038/439787a.

    Article  Google Scholar 

  • Olsen, K. B., Day, S. M., Minster, J. B., Cui, Y., Chourasia, A., Faerman, M., Moore, R., Maechling, P., and Jordan T. (2006), Strong shaking in Los Angeles expected from southern San Andreas earthquake, Geophys. Res. Lett. 33, L07305, doi:10.1029/2005GL025472.

    Article  Google Scholar 

  • Page, R. A., Stephens, C. D., and Lahr, J. C. (1989), Seismicity of the Wrangell and Aleutian Wadati-Benioff Zones and the North American Plate along the trans-Alaska crustal transect, Chugach Mountains and CopperRiver Basin, Southern Alaska, J. Geophys. Res. 94, 16,059–16,082.

    Article  Google Scholar 

  • Ratchkovski, N. A. and Hansen, R. A. (2002), New evidence for segmentation of the Alaska Subduction zone, Bull. Seismol. Soc. Am. 92, 1754–1765.

    Article  Google Scholar 

  • Romanowicz, B. (1991), Seismic tomography of the Earth’s mantle, Ann. Rev. Earth and Planet. Sci. 19, 77–99.

    Article  Google Scholar 

  • Rundle, J. B., Rundle, P. B., Donnellan, A., Li, P., Klein, W., Morein, G., Turcotte D. L., and Grant, L. (2006). Stress transfer in earthquakes, hazard estimation and ensemble forecasting: Inferences from numerical simulations, Tectonophysics 413, 109–125.

    Article  Google Scholar 

  • Rundle, J. B., Rundle, P. B., Klein, W., de sa Martins, J., Tiampo, K. F., Donnellan A., and Kellogg L. H. (2002), GEM plate boundary simulations for the Plate Boundary Observatory: A program for understanding the physics of earthquakes on complex fault networks via observations, theory and numerical simulation, Pure Appl. Geophy. 159, 2357–2381.

    Article  Google Scholar 

  • Sabella, P. (1988), A rendering algorithm for visualizing 3D scalar fields. In: (Dill, J., ed.) Computer Graphics (Proce. ACM SIGGRAPH 88) 22(4), pp. 51–58.

    Google Scholar 

  • Stereo Analyst for ArcGIS. http://gis.leica-geosystems.com/Products/StereoAnalyst/.

    Google Scholar 

  • Tackley, P. (2000), Mantle convection and plate tectonics: Toward an integrated physical and chemical theory, Science 288, 2002–2007.

    Article  Google Scholar 

  • Tassara, A., Gotze, H. J., Schmidt S., and Hackney R (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin, J. Geophys. Res. 111, B09404.

    Article  Google Scholar 

  • Tufte, E., The Visual Display of Quantitative Information (Graphics Press, 1983).

    Google Scholar 

  • USGS (2006), http://earthquake.usgs.gov/regional/nca/virtualtour/.

    Google Scholar 

  • Zhong, S., Gurnis, M. and Moresi, L. (1998), Role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models, J. of Geophy. Res. 103(B7), 15255–15268.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Kellogg, L.H. et al. (2008). Interactive Visualization to Advance Earthquake Simulation. In: Tiampo, K.F., Weatherley, D.K., Weinstein, S.A. (eds) Earthquakes: Simulations, Sources and Tsunamis . Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8757-0_10

Download citation

Publish with us

Policies and ethics