Skip to main content

The site-specific TGase-mediated PEGylation of proteins occurs at flexible sites

  • Chapter
PEGylated Protein Drugs: Basic Science and Clinical Applications

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

Transglutaminase (TGase) is able to catalyse the acyl transfer reaction between the γ-carboxamide group of a protein-bound glutamine (Gln) residue and an amino-derivative of poly(ethylene glycol) (PEG-NH2), thus leading to a PEGylated protein. Several proteins of therapeutic interest have been PEGylated by means of TGase, among them interleukin-2, granulocyte colony-stimulating factor, human growth hormone and erythropoietin. Surprisingly, PEGylation occurred at specific Gln residue(s), despite the fact that these proteins contained several Gln residues. An analysis of the TGase-mediated reactions in terms of structure and dynamics of protein substrates revealed a correlation between sites of TGase attack and chain regions of enhanced backbone flexibility, as detected by the crystallographic profile of the B-factor along the protein polypeptide chain. Moreover, the TGasemediated reactions often occurred at chain regions characterized by missing electron density, indicating that these regions are disordered. In particular, it was noted that in a number of cases the sites of TGase attack occurred at the same chain regions prone to limited proteolysis phenomena. Since chain flexibility or local unfolding was earlier found to dictate the sites of limited proteolysis of proteins, it is concluded that both TGase and a protease require an unfolded polypeptide substrate in an extended conformation for the site-specific enzymatic attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: A summary and pharmacological classification. Nature Rev Drug Discov 7: 21–39

    Article  CAS  Google Scholar 

  2. Frokjaer S, Otzen DE (2005) Protein drug stability: A formulation challenge. Nature Rev Drug Discov 4: 298–306

    Article  CAS  Google Scholar 

  3. Pavlou A, Reichert J (2004) Recombinant protein therapeutics: Success rates, market trends and values to 2010. Nature Biotechnol 22: 1513–1519

    Article  CAS  Google Scholar 

  4. Harris JM, Chess R (2003) Effect of PEGylation on pharmaceuticals. Nature Rev Drug Discov 2: 214–221

    Article  CAS  Google Scholar 

  5. Davis F (2002) The origin of PEGnology. Adv Drug Deliv Rev 54: 457–458

    Article  PubMed  CAS  Google Scholar 

  6. Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF (1977) Effect of covalent attachment of poly(ethylene glycol) on immunogenicity and circulating life of bovine liver catalase. J Biol Chem 252: 3582–3586

    PubMed  CAS  Google Scholar 

  7. Abuchowski A, van Es T, Palczuk NC, Davis FF (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J Biol Chem 252: 3578–3581

    PubMed  CAS  Google Scholar 

  8. Harris JM (ed.) (1991) Poly(ethylene glycol) chemistry: Biotechnological and biomedical applications. Plenum Press, New York

    Google Scholar 

  9. Pasut G, Guiotto A, Veronese FM (2004) Protein, peptide and non-peptide drug PEGylation for therapeutic applications. Expert Opin Ther Pat 14: 1–36

    Article  Google Scholar 

  10. Malik DK, Baboota S, Ahuja A, Hasan S, Ali J (2007) Recent advances in protein and peptide drug delivery systems. Curr Drug Deliv 4: 141–151

    Article  PubMed  CAS  Google Scholar 

  11. Veronese FM, Pasut G (2005) PEGylation, successful approach to drug delivery. Drug Discovery Today 10: 1451–1458

    Article  PubMed  CAS  Google Scholar 

  12. Harris JM, Veronese FM (eds): (2002) Peptide and protein PEGylation. Adv Drug Deliv Rev 54: 453–610

    Google Scholar 

  13. Harris JM, Veronese FM (eds): (2003) Peptide and protein PEGylation II: Clinical evaluation. Adv Drug Deliv Rev 55: 1259–1350

    Google Scholar 

  14. Harris JM, Veronese FM (eds): (2008) Peptide and protein PEGylation III: Advances in chemistry and clinical applications. Adv Drug Deliv Rev 60: 1–88

    Google Scholar 

  15. Duncan R (2003) The dawning era of polymer therapeutics. Nature Rev Drug Discov 2: 347–360

    Article  CAS  Google Scholar 

  16. Thordarson P, Le Droumaguet B, Velonia K (2006) Well-defined protein-polymer conjugates: Synthesis and potential applications. Appl Microbiol Biotechnol 73: 243–254

    Article  PubMed  CAS  Google Scholar 

  17. Zalipsky S (1995) Chemistry of polyfethylene glycol) conjugates with biologically active molecules. Adv Drug Deliv Rev 16: 157–182

    Article  CAS  Google Scholar 

  18. Roberts MJ, Bentley MD, Harris JM (2002) Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54: 459–476

    Article  PubMed  CAS  Google Scholar 

  19. Pasut G, Veronese FM (2006) PEGylation of proteins as tailored chemistry for optimized bioconjugates. Adv Polym Sci 192: 95–134

    Article  CAS  Google Scholar 

  20. Veronese FM (2001) Peptide and protein PEGylation: A review of problems and solutions. Biomaterials 22: 405–417

    Article  PubMed  CAS  Google Scholar 

  21. Reichert JM (2003) Trends in development and approval times for new therapeutics in the United States. Nature Rev Drug Discov 2: 695–702

    Article  CAS  Google Scholar 

  22. Gentle I, DeSouza I, Baca M (2004) Direct production of proteins with N-terminal cysteine for site-specific conjugation. Bioconjug Chem 15: 658–663

    Article  PubMed  CAS  Google Scholar 

  23. Goodson RJ, Katre NV (1990) Site-directed PEGylation of recombinant interleukin-2 at its glycosylation site. Biotechnology 8: 343–346

    Article  PubMed  CAS  Google Scholar 

  24. Doherty DH, Rosendahl MS, Smith DJ, Hughes JM, Chilpala EA, Cox GN (2005) Site-specific PEGylation of engineered cysteine analogs of recombinant human granulocyte-macrophage colony-stimulating factor. Bioconjug Chem 16: 1291–1298

    Article  PubMed  CAS  Google Scholar 

  25. Wetzel R, Halualani R, Stults JT, Quan C (1990) A general method for highly selective crosslinking of unprotected polypeptides via pH-controlled modification of N-terminal α-amino groups. Bioconjug Chem 1: 114–122

    Article  PubMed  CAS  Google Scholar 

  26. Wang YS, Youngster S, Grace M, Bausch J, Bordens R, Wyss DF (2002) Structural and biological characterization of PEGylated recombinant interferon 2b and its therapeutic implications. Adv Drug Deliv Rev 54: 547–570

    Article  PubMed  CAS  Google Scholar 

  27. Lee H, Jang H, Ryu S, Park T (2003) N-Terminal site-specific mono-PEGylation of epidermal growth factor. Pharm Res 20: 818–825

    Article  PubMed  CAS  Google Scholar 

  28. Kinstler O, Molineux G, Treuheit M, Ladd D, Gegg C (2002) Mono-N-terminal poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 54: 477–485

    Article  PubMed  CAS  Google Scholar 

  29. Gaertner HF, Offord RE (1996) Site-specific attachment of functionalized poly(ethylene glycol) to the amino terminus of proteins. Bioconjug Chem 7: 38–44

    Article  PubMed  CAS  Google Scholar 

  30. Sato H, Ikeda M, Suzuki K, Hirayama K (1996) Site-specific modification of interleukin-2 by the combined use of genetic engineering techniques and transglutaminase. Biochemistry 35: 13072–13080

    Article  PubMed  CAS  Google Scholar 

  31. Sato H, Yamamoto Y, Hayashi E, Takahara Y (2000) Transglutaminase-mediated dual and site-specific incorporation of poly(ethylene glycol) derivatives into a chimeric interleukin-2. Bioconjug Chem 11: 502–509

    Article  PubMed  CAS  Google Scholar 

  32. Sato H, Hayashi E, Yamada N, Yatagai M, Takahara Y (2001) Further studies on the site-specific protein modification by microbial transglutaminase. Bioconjug Chem 12: 701–710

    Article  PubMed  CAS  Google Scholar 

  33. Sato H (2002) Enzymatic procedure for site-specific PEGylation of proteins. Adv Drug Deliv Rev 54: 487–504

    Google Scholar 

  34. Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev 60: 13–28

    Article  PubMed  CAS  Google Scholar 

  35. Folk JE (1980) Transglutaminases. Annu Rev Biochem 49: 517–531

    Article  PubMed  CAS  Google Scholar 

  36. Lorand L, Conrad SM (1984) Transglutaminases. Mol Cell Biochem 58: 9–35

    Article  PubMed  CAS  Google Scholar 

  37. Folk JE (1983) Mechanism and basis for specificity of transglutaminase-catalyzed ε-(γ-glutamyl) lysine bond formation. Adv Enzymol Relat Areas Mol Biol 54: 1–56

    Article  PubMed  CAS  Google Scholar 

  38. Gorman JJ, Folk JE (1980) Structural features of glutamine substrates for human plasma factor XIIIa (activated blood coagulation factor XIII). J Biol Chem 255: 419–427

    PubMed  CAS  Google Scholar 

  39. Gorman JJ, Folk JE (1984) Structural features of glutamine substrates for transglutaminases: Role of extended interactions in the specificity of human plasma factor XIIIa and of the guinea pig liver enzyme. J Biol Chem 259: 9007–9010

    PubMed  CAS  Google Scholar 

  40. Griffin R, Casadio R, Bergamini CM (2002) Transglutaminases: Nature’s biological glues. Biochem J 368: 377–396

    Article  PubMed  CAS  Google Scholar 

  41. Folk JE, Finlayson JS (1977) The ε-(γ-glutamyl)lysine crosslink and the catalytic role of trans-glutaminases. Adv Protein Chem 31: 1–133

    Article  PubMed  CAS  Google Scholar 

  42. Mero A, Spolaore B, Veronese FM, Fontana A (2009) Transglutaminase-mediated PEGylation of proteins: Direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG. Bioconjug Chem 20: 384–389

    Article  PubMed  CAS  Google Scholar 

  43. Ando H, Adachi M, Umeda K, Matsuura A, Nonaka M, Uchio R, Tanaka H, Motoki M (1989) Purification and characterization of a novel transglutaminase derived from microorganisms. Agric Biol Chem 53: 2613–2617

    CAS  Google Scholar 

  44. Washizu K, Ando K, Koiked S, Hiros S, Matsuura A, Akagi H, Motoki M, Takeuchi K (1994) Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Biosci Biotechnol Biochem 58: 82–87

    Article  PubMed  CAS  Google Scholar 

  45. Kanaji T, Ozaki H, Takao T, Kawajiri H, Ide H, Motoki M, Shimonishi Y (1993) Primary structure of microbial transglutaminase from Streptoverticillium sp. strain s-8112. J Biol Chem 268: 11565–11572

    PubMed  CAS  Google Scholar 

  46. Kashiwagi T, Yokoyama K, Ishikawa K, Ono K, Ejima D, Matui H, Suzuki E (2002) Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J Biol Chem 277: 44252–44260

    Article  PubMed  CAS  Google Scholar 

  47. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28: 235–242

    Article  PubMed  CAS  Google Scholar 

  48. Yee VC, Pedersen LC, Le Trong I, Bishop PD, Steukamp RE, Teller DC (1994) Three-dimensional structure of a transglutaminase: Human blood coagulation factor XIII. Proc Natl Acad Sci USA 91:7296–7300

    Article  PubMed  CAS  Google Scholar 

  49. Menéndez O, Rawel H, Schwarzenbolz U, Henle T (2006) Structural changes of microbial transglutaminase during thermal and high-pressure treatment. J Agric Food Chem 54: 1716–1721

    Article  PubMed  CAS  Google Scholar 

  50. Zhu Y, Tramper J (2008) Novel applications for microbial transglutaminase beyond food processing. Trends Biotechnol 26: 559–565

    Article  PubMed  CAS  Google Scholar 

  51. Zhu Y, Rinzema A, Tramper J, Bol J (1995) Microbial transglutaminases: A review of its production and application in food processing. Appl Microbiol Biotechnol 44: 277–282

    Article  CAS  Google Scholar 

  52. Yokohama K, Nio N, Kikuchi Y (2004) Properties and applications of microbial transglutaminases. Appl Microbiol Biotechnol 64: 447–454

    Article  CAS  Google Scholar 

  53. Mariniello L, Porta R (2005) Transglutaminases as biotechnological tools. In: K Mehta, R Eckert (eds): Transglutaminase. Prog Exp Tum Res, Basel, Karger, 38: 174–191

    Google Scholar 

  54. Waldmann TA (2006) The biology of interleukin-2 and interleukin-15: Implications for cancer therapy and vaccine design. Nature Rev Immunol 6: 595–601

    Article  CAS  Google Scholar 

  55. Malek TR (2008) The biology of interleukin-2. Annu Rev Immunol 26: 453–479

    Article  PubMed  CAS  Google Scholar 

  56. Brandhuber BJ, Boone T, Kenney WC, McKay DB (1987) Three-dimensional structure of interleukin-2. Science 238: 1707–1709

    Article  PubMed  CAS  Google Scholar 

  57. Cohen FE, Kosen PA, Kuntz ID, Epstein LB, Ciardelli TL, Smith KA (1986) Structure-activity studies of interleukin-2. Science 234: 349–352

    Article  PubMed  CAS  Google Scholar 

  58. Mott HR, Baines BS, Hall RM, Cooke RM, Driscoll PC, Weir MP, Campbell ID (1995) The solution structure of the F42A mutant of human interleukin-2. J Mol Biol 247: 979–994

    Article  PubMed  CAS  Google Scholar 

  59. Arkin MA, Randal M, DeLano WL, Hyde J, Luong TN, Oslob JD, Raphael DR, Taylor L, Wang J, McDowell RS et al. (2003) Binding of small molecules to an adaptive protein-protein interface. Proc Natl Acad Sci USA 100: 1603–1608

    Article  PubMed  CAS  Google Scholar 

  60. Frauenfelder H, Petsko GA, Tsernoglou D (1979) Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 280: 558–563

    Article  PubMed  CAS  Google Scholar 

  61. Sternberg MJE, Grace DEP, Phillips DC (1979) Dynamic information from protein crystallography: An analysis of temperature factors from refinement of the hen egg-white lysozyme. J Mol Biol 130: 231–253

    Article  PubMed  CAS  Google Scholar 

  62. Ringe D, Petsko GA (1985) Mapping protein dynamics by X-ray diffraction. Prog Biophys Mol Biol 45: 197–235

    Article  PubMed  CAS  Google Scholar 

  63. Ringe D, Petsko GA (1986) Study of protein dynamics by X-ray diffraction. Methods Enzymol 131:389–433

    Article  PubMed  CAS  Google Scholar 

  64. Kundu S, Melton JS, Sorensen DC, Phillips Jr GN (2002) Dynamics of proteins in crystals: Comparison of experiment with simple models. Biophys J 83: 723–732

    Article  PubMed  CAS  Google Scholar 

  65. Smith DK, Radivojac P, Obradovic Z, Dunker AK, Zhu G (2003) Improved amino acid flexibility parameters. Protein Sci 12: 1060–1072

    Article  PubMed  CAS  Google Scholar 

  66. Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, Brown CJ, Lawson JD, Dunker AK (2004) Protein flexibility and intrinsic disorder. Protein Sci 13: 71–80

    Article  PubMed  CAS  Google Scholar 

  67. Akbarzadeh S, Layton JE (2001) Granulocyte colony-stimulating factor receptor: Structure and function. Vitam Horm 63: 159–194

    Article  PubMed  CAS  Google Scholar 

  68. Zink T, Ross A, Luers K, Cieslar C, Rudolph R, Holak TA (1994) Structure and dynamics of the human granulocyte colony-stimulating factor determined by NMR spectroscopy: Loop mobility in a four-helix-bundle protein. Biochemistry 33: 8453–8463

    Article  PubMed  CAS  Google Scholar 

  69. Hill CP, Osslund TD, Eisenberg D (1993) The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors. Proc Natl Acad Sci USA 90: 5167–5171

    Article  PubMed  CAS  Google Scholar 

  70. Morstyn G, Dexter TM (1994) Neopogen (r-metHuG-CSF) in clinical practice. M. Dekker, New York

    Google Scholar 

  71. Weite K, Gabrilove J, Bronchud MH, Platzer E, Morstyn G (1996) Filgrastim (r-metHuG-CSF): The first 10 years. Blood 88: 1907–1929

    Google Scholar 

  72. Lubenau H, Bias P, Maly AK, Siegler KE, Mehltretter K (2009) Pharmacokinetic and pharmacodynamic profile of new biosimilar filgrastim XM02 equivalent to marketed filgrastim Neupogen: Single-blind, randomized, crossover trial. BioDrugs 23: 43–51

    Article  PubMed  CAS  Google Scholar 

  73. Herman AC, Boone TC, Lu HS (1996) Characterization, formulation, and stability of Neupogen (Filgrastim), a recombinant human granulocyte-colony stimulating factor. Pharm Biotechnol 9: 303–328

    Article  PubMed  CAS  Google Scholar 

  74. Molineux G (2004) The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr Pharm Des 10: 1235–1244

    Article  PubMed  CAS  Google Scholar 

  75. Piedonte DM, Treuheit MJ (2008) Formulation of Neulasta (pegfilgrastim). Adv Drug Deliv Rev 60: 50–58

    Article  CAS  Google Scholar 

  76. Veronese FM, Mero A, Caboi F, Sergi M, Marongiu C, Pasut G (2007) Site-specific PEGylation of G-CSF by reversible denaturation. Bioconjug Chem 18: 1824–1830

    Article  PubMed  CAS  Google Scholar 

  77. Tonon G, Orsini G (2008) G-CSF site-specific mono-conjugates. Patent WO/2008/7017603, Int. Application No. PCT/EP2007/057824

    Google Scholar 

  78. Li CH (1982) Human growth hormone: 1974–1981. Mol Cell Biochem 46: 31–41

    PubMed  CAS  Google Scholar 

  79. Clark R, Olson K, Fuh G, Marian M, Mortensen D, Teshima G, Chang S, Chu H, Mukku V, Canova-Davis E et al. (1996) Long-acting growth hormones produced by conjugation with poly(ethylene glycol). J Biol Chem 271: 21969–21977

    Article  PubMed  CAS  Google Scholar 

  80. Cox GN, Rosendahl MS, Chlipala EA, Smith DJ, Carlson SJ, Doherty DH (2007) A long-acting mono-PEGylated human growth hormone analog is a potent stimulator of weight gain and bone growth in hypophysectomized rats. Endocrinology 148: 1590–1597

    Article  PubMed  CAS  Google Scholar 

  81. Dorwald F, Johansen N, Iversen L (2006) Transglutaminase-mediated conjugation of growth hormone. Patent WO/2006/134148, Int. Application No. PCT/EP2006/063246

    Google Scholar 

  82. de Vos AM, Ultsch MH, Kossiakoff AA (1992) Human growth hormone and extracellular domain of its receptor: Crystal structure of the complex. Science 255: 306–312

    Article  PubMed  Google Scholar 

  83. Ultsch MH, Somers W, Kossiakoff AA, de Vos AM (1994) The crystal structure of affinitymatured human growth hormone at 2 Å resolution. J Mol Biol 236: 286–299

    Article  PubMed  CAS  Google Scholar 

  84. Spolaore B, Polverino de Laureto P, Zambonin M, Fontana A (2004) Limited proteolysis of human growth hormone at low pH: Isolation, characterization and complementation of the two biologically relevant fragments 1–44 and 45–191. Biochemistry 43: 6576–6586

    Article  PubMed  CAS  Google Scholar 

  85. Polverino de Laureto P, Toma S, Tonon G, Fontana A (1995) Probing the structure of human growth hormone by limited proteolysis. Int J Pept Prot Res 45: 200–208

    CAS  Google Scholar 

  86. Jelkmann W (2007) Erythropoietin after a century of research: Younger than ever. Eur J Haematol 78: 183–205

    Article  PubMed  CAS  Google Scholar 

  87. Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA (2003) Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 31:290–299

    Article  PubMed  CAS  Google Scholar 

  88. Pool CT (2004) Formation of novel erythropoietin conjugates using transglutaminase. Patent WO/2004/148667, Int. Application No. PCT/US2004/016670

    Google Scholar 

  89. Syed RS, Reid SW, Li C, Cheetham JC, Aoki KH, Liu B, Zhan H, Osslund TD, Chirino AJ, Zhang J et al. (1998) Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 395: 511–516

    Article  PubMed  CAS  Google Scholar 

  90. Cheetham JC, Smith DM, Aoki KH, Stevenson JL, Hoeffel TJ, Syed RS, Egrie J, Harvey TS (1998) NMR structure of human erythropoietin and a comparison with its receptor bound conformation. Nature Struct Biol 5: 861–866

    Article  PubMed  CAS  Google Scholar 

  91. Evans SV, Brayer GD (1990) High-resolution study of the three-dimensional structure of horse heart metmyoglobin. J Mol Biol 213: 885–897

    Article  PubMed  CAS  Google Scholar 

  92. Eliezer D, Wright PE (1996) Is apomyoglobin a molten globule? Structural characterization by NMR. J Mol Biol 263: 531–538

    Article  PubMed  CAS  Google Scholar 

  93. Eliezer D, Yao J, Dyson HJ, Wright PE (1998) Structural and dynamic characterization of partially folded states of apomyoglobin and implications for protein folding. Nature Struct Biol 5: 148–155

    Article  PubMed  CAS  Google Scholar 

  94. Fontana A, Zambonin M, Polverino de Laureto P, De Filippis V, Clementi A, Scaramella E (1997) Probing the conformational state of apomyoglobin by limited proteolysis. J Mol Biol 266: 223–230

    Article  PubMed  CAS  Google Scholar 

  95. Picotti P, Marabotti A, Negro A, Musi V, Spolaore B, Zambonin M, Fontana A (2004) Modulation of the structural integrity of helix F in apomyoglobin by single amino acid replacements. Protein Sci 13: 1572–1585

    Article  PubMed  CAS  Google Scholar 

  96. Musi V, Spolaore B, Picotti P, Zambonin M, De Filippis V, Fontana A (2004) Nicked apomyoglobin: A noncovalent complex of two polypeptide fragments comprising the entire protein chain. Biochemistry 43: 6230–6240

    Article  PubMed  CAS  Google Scholar 

  97. Brooks CL (1992) Characterization of “native” apomyoglobin by molecular dynamics simulation. J Mol Biol 227: 375–380

    Article  PubMed  CAS  Google Scholar 

  98. Tirado-Rives J, Jorgensen WL (1993) Molecular dynamics simulations of the unfolding of apomyoglobin in water. Biochemistry 32: 4175–4184

    Article  PubMed  CAS  Google Scholar 

  99. Hirst JD, Brooks CL (1995) Molecular dynamics simulations of isolated helices of myoglobin. Biochemistry 34: 7614–7621

    Article  PubMed  CAS  Google Scholar 

  100. Onufriev A, Case DA, Bashford D (2003) Structural details, pathways and energetics of unfolding apomyoglobin. J Mol Biol 325: 555–567

    Article  PubMed  CAS  Google Scholar 

  101. Taki M, Shiota M, Taira K (2004) Transglutaminase-mediated N-and C-terminal fluorescein labelling of a protein can support the activity of the modified protein. Protein Eng Des Select 17: 119–126

    Article  CAS  Google Scholar 

  102. Tanaka T, Kamiya N, Nagamune T (2004) Peptidyl linkers for protein heterodimerization catalyzed by microbial transglutaminase. Bioconjug Chem 15: 491–497

    Article  PubMed  CAS  Google Scholar 

  103. Meusel M (2004) Synthesis of hapten-protein conjugates using microbial transglutaminase. Methods Mol Biol 283: 109–123

    PubMed  CAS  Google Scholar 

  104. Kamiya N, Tanaka T, Suzyuki T, Takazawa T, Takeda S, Watanabe K, Nagamune T (2003) S-Peptide as a potent peptidyl linker for protein crosslinking by microbial transglutaminase from Streptomyces mobaraensis. Bioconjug Chem 14: 351–357

    Article  PubMed  CAS  Google Scholar 

  105. Kim E, Motoki M, Seguro K, Muhlrad A, Reisler E (1995) Conformational changes in subdomain 2 of G-actin: Fluorescence probing by dansyl-ethylenediamine attached to Gln-41. Biophys J 69: 2024–2032

    Article  PubMed  CAS  Google Scholar 

  106. Mornet D, Ue K (1984) Proteolysis and structure of skeletal muscle actin (limited proteolysis/organization of G-actin). Proc Natl Acad Sci USA 81: 3680–3684

    Article  PubMed  CAS  Google Scholar 

  107. Moraczewska J, Wawro B, Seguro K, Strzelecka-Golaszewska H (1999) Divalent cation-, nucleotide-and polymerization-dependent changes in the conformation of subdomain 2 of actin. Biophys J 11: 373–385

    Article  Google Scholar 

  108. Khaitlina SY, Moraczewska J, Strzelecka-Golaszewska H (1993) The actin/actin interactions involving the N-terminus of the DNase-I-binding loop are crucial for stabilization of the actin filament. Eur J Biochem 218: 911–920

    Article  PubMed  CAS  Google Scholar 

  109. Borovikov YS, Moraczewska J, Khoroshev MI, Strzelecka-Golaszewska H (2000) Proteolytic cleavage of actin within the DNase-I-binding loop changes the conformation of F-actin and its sensitivity to myosin binding. Biochim Biophys Acta 1478: 138–151

    PubMed  CAS  Google Scholar 

  110. Klenchin VA, Allingham JS, King R, Tanaka J, Marriott G, Rayment I (2003) Trisoxazole macrolide toxins mimic the binding of actin-capping proteins to actin. Nature Struct Biol 10: 1058–1063

    Article  PubMed  CAS  Google Scholar 

  111. Matsumura Y, Yuporn C, Kumazawa Y, Ohtsuka T, Mori T (1996) Enhanced susceptibility to transglutaminase reaction of α-lactalbumin in molten globule state. Biochim Biophys Acta 1292: 69–76

    PubMed  Google Scholar 

  112. Gu YS, Matsumura Y, Yamaguchi S, Mori T (2001) Action of protein-glutaminase on α-lactalbumin in the native and molten globule states. J Agric Food Chem 49: 5999–6005

    Article  PubMed  CAS  Google Scholar 

  113. Nieuwenhuisen WF, Dekker HL, De Koning LJ, Groneveld T, De Koster CG, De Jong GA (2003) Modification of glutamine and lysine residues in holo and apo α-lactalbumin with microbial transglutaminase. J Agric Food Chem 51: 7132–7139

    Article  CAS  Google Scholar 

  114. Lee DS, Matsumoto S, Matsumura Y, Mori T (2002) Identification of the ε-(γ-glutamyl)lysine crosslinking sites in α-lactalbumin polymerized by mammalian and microbial transglutaminases. J Agric Food Chem 50: 7412–7419

    Article  PubMed  CAS  Google Scholar 

  115. Kuwajima K (1996) The molten globule state of α-lactalbumin. FASEB J 10: 102–109

    PubMed  CAS  Google Scholar 

  116. Schulman BA, Kim PS, Dobson CM, Redfield C (1997) A residue-specific NMR view of the non-cooperative unfolding of a molten globule. Nature Struct Biol 4: 630–634

    Article  PubMed  CAS  Google Scholar 

  117. Polverino de Laureto P, De Filippis V, Di Bello M, Zambonin M, Fontana A (1995) Probing the molten globule state of α-lactalbumin by limited proteolysis. Biochemistry 34: 12596–12604

    Article  PubMed  CAS  Google Scholar 

  118. Polverino de Laureto P, Frare E, Gottardo R, Fontana A (2002) Molten globule of bovine α-lactalbumin at neutral pH induced by heat, trifluoroethanol and oleic acid: A comparative analysis by circular dichroism spectroscopy and limited proteolysis. Proteins: Struct Funct Genet 49: 385–397

    Article  CAS  Google Scholar 

  119. Dyson HJ, Wright PE (2002) Coupling of folding and binding for unstructured proteins. Curr Opin Struct Biol 12: 54–60

    Article  PubMed  CAS  Google Scholar 

  120. Dunker AK, Brown CJ, Lawson LD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41: 6573–6582

    Article  PubMed  CAS  Google Scholar 

  121. Uversky VN (2002) Natively unfolded proteins: A point where biology waits for physics. Protein Sci 11: 739–756

    Article  PubMed  CAS  Google Scholar 

  122. Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27: 527–533

    Article  PubMed  CAS  Google Scholar 

  123. Junn E, Ronchetti RD, Quezabo MM, Kim SY, Mouradian MM (2003) Tissue transglutaminaseinduced aggregation of α-synuclein: Implications for Lewy body formation in Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 100: 2047–2052

    Article  PubMed  CAS  Google Scholar 

  124. Prasana Murthy SN, Wilson JH, Lukas TJ, Kuret J, Lorand L (1998) Crosslinking sites of the human tau protein probed by reactions with human transglutaminase. J Neurochem 71: 2607–2614

    Article  Google Scholar 

  125. Karpuj MV, Garren H, Slunt H, Price DL, Gusella J, Becker MW, Steinman L (1999) Transglutaminase aggregates huntingtin into non-amyloidogenic polymers and its enzymatic activity increases in Huntington’s disease brain nuclei. Proc Natl Acad Sci USA 96: 7388–7393

    Article  PubMed  CAS  Google Scholar 

  126. Karpuj M, Steinman L (2004) The multifaceted role of transglutaminase in neurodegeneration. Amino Acids 26: 373–379

    Article  PubMed  CAS  Google Scholar 

  127. Karpuj MV, Becker MW, Steinman L (2002) Evidence for a role for transglutaminase in Huntington’s disease and the potential therapeutic implications. Neurochem Int 40: 31–36

    Article  PubMed  CAS  Google Scholar 

  128. Lesort M, Chun W, Johson GVW, Ferrante RJ (1999) Tissue transglutaminase is increased in Huntington’s disease brain. J Neurochem 73: 2018–2027

    PubMed  CAS  Google Scholar 

  129. Selkoe DJ, Abraham C, Ihara Y (1982) Brain transglutaminase: In vitro crosslinking of human neurofilament proteins into insoluble polymers. Proc Natl Acad Sci USA 79: 6070–6074

    Article  PubMed  CAS  Google Scholar 

  130. Johnson GV, Cox TM, Lockar JP, Zimmerman MD, Miller ML, Powers RE (1997) Transglutaminase activity is increased in Alzheimer’s disease in brain. Brain Res 75: 323–329

    Article  Google Scholar 

  131. Konno T, Morii T, Hirata A, Sato S, Oiki S, Ikura K (2005) Covalent blocking of fibril formation and aggregation of intracellular amyloidogenic proteins by transglutaminase-catalyzed intramolecular crosslinking. Biochemistry 44: 2072–2079

    Article  PubMed  CAS  Google Scholar 

  132. Coussons PJ, Price NC, Kelly SM, Smith B, Sawyer L (1992) Factors that govern the specificity of transglutaminase-catalysed modification of proteins and peptides. Biochem J 282: 929–930

    PubMed  CAS  Google Scholar 

  133. Case A, Smith RL (2003) Kinetic analysis of the action of tissue transglutaminase on peptide and protein substrates. Biochemistry 42: 9466–9481

    Article  PubMed  CAS  Google Scholar 

  134. Ohtsuka T, Ota M, Nio N, Motoki M (2000) Comparison of substrate specificities of transglutaminases using synthetic peptides as acyl donors. Biosci Biotechnol Biochem 64: 2608–2613

    Article  PubMed  CAS  Google Scholar 

  135. Sugimura Y, Hosono M, Wada F, Yoshimura T, Maki M, Hitomi K (2006) Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: Identification of peptide substrates for TGase 2 and Factor XIIIA. J Biol Chem 281: 17699–17706

    Article  PubMed  CAS  Google Scholar 

  136. Facchiano F, Facchiano A (2005) Transglutaminases and their substrates. Prog Exp Tumor Res 38: 37–57

    Article  PubMed  CAS  Google Scholar 

  137. Facchiano A, Facchiano F (2009) Transglutaminases and their substrates in biology and human diseases: 50 years of growing. Amino Acids 36: 599–614

    Article  PubMed  CAS  Google Scholar 

  138. Sugimura Y, Yokoyama K, Nio N, Maki M, Hitomi K (2008) Identification of preferred substrate sequences of microbial transglutaminase from Streptomyces mobaraensis using a phage-displayed peptide library. Arch Biochem Biophys 477: 379–383

    Article  PubMed  CAS  Google Scholar 

  139. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27: 157–162

    Article  PubMed  CAS  Google Scholar 

  140. Hubbard SJ, Eisenmenger F, Thornton JM (1994) Modelling studies of the change in conformation required for cleavage of limited proteolytic sites. Protein Sci 3: 757–768

    Article  PubMed  CAS  Google Scholar 

  141. Hubbard SJ (1998) The structural aspects of limited proteolysis of native proteins. Biochim Biophys Acta 1382: 191–206

    PubMed  CAS  Google Scholar 

  142. Fontana A, Fassina G, Vita C, Dalzoppo D, Zamai M, Zambonin M (1986) Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochemistry 25: 1847–1851

    Article  PubMed  CAS  Google Scholar 

  143. Fontana A, Polverino de Laureto P, De Filippis V, Scaramella E, Zambonin M (1999) Limited proteolysis in the study of protein conformation. In: EE Sterchi, W Stöcker (eds): Proteolytic Enzymes: Tools and Targets. Springer Verlag, Heidelberg, 257–284

    Google Scholar 

  144. Fontana A, Polverino de Laureto P, De Filippis V, Scaramella E, Zambonin M (1997) Probing the partly folded states of proteins by limited proteolysis. Folding Des 2: R17–R26

    Article  CAS  Google Scholar 

  145. Fontana A, Polverino de Laureto P, Spolaore B, Frare E, Picotti P, Zambonin M (2004) Probing protein structure by limited proteolysis. Acta Biochim Pol 51: 299–321

    PubMed  CAS  Google Scholar 

  146. Tyndall JDA, Fairlie DP (1999) Conformational homogeneity in molecular recognition by proteolytic enzymes. J Mol Recognit 12: 363–370

    Article  PubMed  CAS  Google Scholar 

  147. Tyndall JDA, Nall T, Fairlie DP (2005) Proteases universally recognize beta strands in their active site. Chem Rev 105: 973–999

    Article  PubMed  CAS  Google Scholar 

  148. Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acid Res 32: 1037–1049

    Article  PubMed  CAS  Google Scholar 

  149. Zheng J, Trafny EA, Knighton DR, Xuong NH, Taylor SS, Ten Eyck LF, Sowadski JM (1993) A refined crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MnATP and a peptide inhibitor. Acta Crystallogr 49: 362–365

    CAS  Google Scholar 

  150. Reichert JM (2006) Trends in US approvals: New biopharmaceuticals and vaccines. Trends Biotechnol 24: 293–298

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Fontana, A., Spolaore, B., Mero, A., Veronese, F.M. (2009). The site-specific TGase-mediated PEGylation of proteins occurs at flexible sites. In: Veronese, F.M. (eds) PEGylated Protein Drugs: Basic Science and Clinical Applications. Milestones in Drug Therapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8679-5_6

Download citation

Publish with us

Policies and ethics