Skip to main content

Part of the book series: Milestones in Drug Therapy ((MDT))

Abstract

A historical overview of protein-polymer conjugation is reported here, demonstrating the superiority of poly(ethylene glycol) (PEG) among other synthetic or natural polymers, thanks to its unique properties like the absence of toxicity and immunogenicity, and a high solubility in water and in organic solvents. Furthermore, PEG is approved by the FDA for human use. Relevant physicochemical and biological properties of PEG and PEG-conjugates, as the basis of the pharmacokinetic and pharmacodynamic improvements, are reported here and discussed in view of successful therapeutic applications. The chapter also highlights that, although PEGylation is well studied and exploited by many researchers from both academia and industry, it remains difficult to forecast its effects on a predetermined bioactive molecule. The use of PEG-enzymes in bioconversion, which is of interest in drug discovery and production, is also briefly reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis F (2002) The origin of pegnology. Adv. Drug. Del. Rev 54: 457–458

    Article  CAS  Google Scholar 

  2. Working PK, Newman S S, Johnson J, Cornacoff JB (1997) Safety of poly(ethylene glycol) derivatives. In: Harris JM, Zalipsky S (eds): Poly(ethylene glycol) Chemistry and Biological Applications. ACS Books, Washington, 45–54

    Chapter  Google Scholar 

  3. Von Spect BH, Seinfeld H, Brendel W (1973) Polyvinylpyrrolidone as a soluble carrier of proteins. Physiol Chem 354: 1659–1660

    Google Scholar 

  4. Ranucci E, Spagnoli G, Sartore L, Bigotti P, Schiavon O, Caliceti P, Veronese FM (1995) Synthesis and molecular weight characterization of end functionalized poly(N-vinylpyrrolidone) oligomers. Macrom. Chem. Phys 196: 763–774

    Article  CAS  Google Scholar 

  5. Schiavon O, Caliceti P, Ferruti P, Veronese FM (2000) Therapeutic proteins: a comparison of chemical and biological properties of uricase conjugated to linear or branched poly(ethylene glycol) and poly(N-acryloylmorpholine). Farmaco 55: 264–269

    Article  PubMed  CAS  Google Scholar 

  6. Maeda H (2001) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv. Drug Deliv. Rev 46: 169–185

    Article  PubMed  CAS  Google Scholar 

  7. Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polymer Sci 32: 93–146

    Article  CAS  Google Scholar 

  8. Gaertner FC, Luxenhofer R, Blechert B, Jordan R, Essler M (2007) Synthesis, biodistribution and excretion of radiolabeled poly(2-alkyl-2-oxazoline)s. J. Contr. Rel. 119: 291–300

    Article  CAS  Google Scholar 

  9. Mero A, Pasut G, Dalla Via L, Fijten MWM, Schubert US, Hoogenboom R, Veronese FM (2008) Synthesis and characterization of poly(2-ethyl 2-oxazoline)-conjugates with proteins and drugs: Suitable alternatives to PEG-conjugates? J. Contr. Rel 125: 87–95

    Article  CAS  Google Scholar 

  10. Torchilin VP, Mazaev AV, Voronkov I (1982) The use of immobilised streptokinase for the therapy of thromboses. Ther. Arch 54: 21–28

    Google Scholar 

  11. Davis BG, Lloyd RC, Jones JB (1998) Controlled site-selective glycosylation of proteins by a combined sitedirected mutagenesis and chemical modification approach. J. Org. Chem 63: 9614–9615

    Article  CAS  Google Scholar 

  12. Hang HC, Bertozzi CR (2001) Chemoselective approaches to glycoprotein assembly. Ace. Chem. Res 34: 727–736

    Article  CAS  Google Scholar 

  13. Solá RJ, Griebenow K (2006) Chemical glycosylation: New insights on the interrelation between protein structural mobility, thermodynamic stability, and catalysis. FEBS Letters 580: 1685–1690

    Article  PubMed  CAS  Google Scholar 

  14. Imperiali B, O’Connor SE (1999) Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Curr. Opin. Chem. Biol 3: 643–649

    Article  PubMed  CAS  Google Scholar 

  15. Sinclair AM, Elliott S (2005) Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J. Pharm. Sci 94: 1626–1635

    Article  PubMed  CAS  Google Scholar 

  16. Fernandes AI, Gregoriadis G (2001) The effect of polysialylation on the immunogenicity and antigenicity of asparaginase: implication in its pharmacokinetics. Int. J. Pharm 217: 215–224

    Article  PubMed  CAS  Google Scholar 

  17. Gregoriadis G, Jain S, Papaioannou I, Laing P (2005) Improving the therapeutic efficacy of peptides and proteins: a role for polysialic acids. Int. J. Pharm 300: 125–130

    Article  PubMed  CAS  Google Scholar 

  18. Wong K, Cleland LG, Poznanski MJ (1980) Enhanced anti-inflammatory effects and reduced immunogenicity of bovine liver superoxide dismutase by conjugation with homologous albumin. Agent Actions 10: 231–239

    Article  CAS  Google Scholar 

  19. Tao Hu, Zhiguo Su (2002) Bovine serum albumin-bovine hemoglobin conjugate as a candidate blood substitute. Biotech Lett 24: 275–278

    Article  Google Scholar 

  20. Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF (1977) Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem 252: 3582–3586

    PubMed  CAS  Google Scholar 

  21. Abuchowski A, van Es T, Palczuk NC, Davis FF (1977) Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem 252: 3578–3781

    PubMed  CAS  Google Scholar 

  22. Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat. Rev. Drug Discov 7: 21–39

    Article  PubMed  CAS  Google Scholar 

  23. Harris MJ (ed.) (1991) Poly(Ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications. Plenum Press, New York

    Google Scholar 

  24. Harris JM, Veronese FM (eds): (2002) Peptide and protein PEGylation. Adv. Drug Del. Rev 54: 453–610

    Google Scholar 

  25. Harris JM, Veronese FM (eds): (2003) Peptide and protein PEGylation II Clinical Evaluation. Adv. Drug Del. Rev 55: 1259–1350

    Google Scholar 

  26. Harris JM, Veronese FM (eds): (2008) Peptide and protein PEGylation III: Advances in Chemistry and Clinical Applications Adv. Drug Del. Rev 60: 1–88

    Google Scholar 

  27. Sato H (2002) Enzymatic procedure for site-specific pegylation of proteins. Adv. Drug Del. Rev 54: 487–504

    Article  CAS  Google Scholar 

  28. Fontana A, Spolaore B, Mero A, Veronese FM (2008) Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv. Drug Deliv. Rev 60: 13–28

    Article  PubMed  CAS  Google Scholar 

  29. DeFrees S, Wang ZG, Xing R, Scott AE, Wang J, Zopf D, Gouty DL, Sjoberg ER, Panneerselvam K, Brinkman-Van der Linden EC et al. (2006) GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli. Glycobiology 16: 833–843

    Article  PubMed  CAS  Google Scholar 

  30. Berna M, Dalzoppo D, Pasut G, Manunta M, Izzo L, Jones AT, Duncan R, Veronese FM (2006) Novel monodisperse PEG-Dendrons as new tools for targeted drug delivery: synthesis, characterization and cellular uptake. Biomacromol 7: 146–153

    Article  CAS  Google Scholar 

  31. Mero A, Spolaore B, Veronese FM, Fontana A (2009) Transglutaminase-mediated PEGylation of proteins: direct identification of the sites of protein modification by mass spectrometry using a novel monodisperse PEG. Bioconjug Chem 20: 384–389

    Article  PubMed  CAS  Google Scholar 

  32. Monfardini C, Schiavon O, Caliceti P, Morpurgo M, Harris JM, Veronese FM (1995) A branched monomethoxypoly(ethylene glycol) for protein modification. Bioconjug Chem 6: 62–69

    Article  PubMed  CAS  Google Scholar 

  33. Veronese FM, Caliceti P, Schiavon O (1997) Branched and linear Poly(ethyl glycol): influence of the polymers structure on enzymological, pharmacokinetic and immunological properties of protein conjugates. J Bioac Biocomp Polym 12: 196–207

    CAS  Google Scholar 

  34. Foster GR (2004) Pegylated interferons: chemical and clinical differences. Aliment Pharmacol. Ther 20: 825–830

    Article  PubMed  CAS  Google Scholar 

  35. Blick S, Curran M (2007) Certolizumab pegol. Biodrugs 21: 196–201

    Article  Google Scholar 

  36. Ng EWM, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP (2006) A targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Dis 5: 123–132

    Article  CAS  Google Scholar 

  37. Guiotto A, Canevari M, Pozzobon M, Moro S, Orsolini P, Veronese FM (2004) Anchimeric assistance effect on regioselective hydrolysis of branched PEGs: a mechanistic investigation. Bioorg Med Chem 12: 5031–5037

    Article  PubMed  CAS  Google Scholar 

  38. Solá RJ, Rodríguez-Martínez JA, Griebenow K (2007) Modulation of protein biophysical properties by chemical glycosylation: biochemical insights and biomedical implications. Cell Mol. Life Sci 64: 2133–2152

    Article  PubMed  CAS  Google Scholar 

  39. Callahan W, Narhi L, Kosky A, Treuheit M (2001) Sodium chloride enhances the storage and conformational stability of BDNF and PEG-BDNF. Pharm. Res 18: 261–266

    Article  PubMed  CAS  Google Scholar 

  40. Frokjaer S, Otzen DE (2005) Protein drug stability: a formulation challenge. Nat. Rev Drug Discov 4: 298–306

    Article  PubMed  CAS  Google Scholar 

  41. Chapman AP (2002) PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Del. Rev 54: 531–545

    Article  CAS  Google Scholar 

  42. Russell TP, Deline VR, Dozier WD, Felcher GP, Agrawal G, Wool RP, Mays W (1993) Direct observation of reptation at polymer interfaces Nature 365: 235–237

    Article  CAS  Google Scholar 

  43. Veronese FM (2001) Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22: 405–417

    Article  PubMed  CAS  Google Scholar 

  44. Kawai F (2002) Microbial degradations of polyethers. Appl. Microbiol. Biotechnol 58: 30–38

    Article  PubMed  CAS  Google Scholar 

  45. Friman S, Egestad B, Sjövall J, Svanvik J (1993) Hepatic excretion and metabolism of polyethylene glycols and mannitol in the cat. J. Hepatol 17: 48–55

    Article  PubMed  CAS  Google Scholar 

  46. Beranova M, Wasserbauer R, Vancurova D, Stifter M, Ocenaskova J, Mara M (1990) Effect of cytochrome P-450 inhibition and stimulation on intensity of polyethylene degradation in microsomia! fraction of mouse and rat livers. Biomaterials 11: 521–524

    Article  PubMed  CAS  Google Scholar 

  47. Petrak K, Goddard P (1989) Transport of macromolecules across the capillary walls. Adv. Drug Del. Rev 3: 191–214

    Article  CAS  Google Scholar 

  48. Yamaoka T, Tabata Y, Ikada Y (1994) Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J. Pharm. Sci 83: 601–606

    Article  PubMed  CAS  Google Scholar 

  49. Yamaoka T, Tabata Y, Ikada Y (1995) Fate of water-soluble polymers administered via different routes. J. Pharm. Sci 84: 349–354

    Article  PubMed  CAS  Google Scholar 

  50. Hamidi M, Azadi A, Rafiei P (2006) Pharmacokinetic consequences of pegylation. Drug Delivery 13: 399–409

    Article  PubMed  CAS  Google Scholar 

  51. Manjula BN, Tsai A, Upadhya R, Perumalsamy K, Smith PK, Malavalli A, Vandegriff K, Winslow RM, Intaglietta M, Prabhakaran M et al. (2003) Site-specific PEGylation of hemoglobin at Cys-93: correlation between the colligative properties of the PEGylated protein and the length of the conjugated PEG chain. Bioconj. Chem 14: 464–472

    Article  CAS  Google Scholar 

  52. Fee CJ, Van Alstine JM (2004) Prediction of the viscosity radius and the size exclusion chromatography behavior of PEGy lated proteins. Bioconj. Chem 15: 1304–1313

    Article  CAS  Google Scholar 

  53. Fee CJ (2007) Size comparison between proteins PEGylated with branched and linear polyfethylene glycol) molecules. Biotechnol. Bioeng 98: 725–731

    Article  PubMed  CAS  Google Scholar 

  54. Bailon P, Palleroni A, Schaffer CA, Spence CL, Fung WJ, Porter JE, Ehrlich GK, Pan W, Xu ZX, Modi MW (2001) Rational design of apotent, long-lasting form of interferon: a40 kDa branched polyethylene glycol-conjugated interferon −2a for the treatment of hepatitis C. Bioconj. Chem 12: 195–202

    Article  CAS  Google Scholar 

  55. Wang YS, Youngster S, Grace M, Bausch J, Bordens R, Wyss DF (2002) Structural and biological characterization of pegylated recombinant interferon alpha-2b and its therapeutic implications. Adv. Drug Delivery Rev 54: 547–570

    Article  CAS  Google Scholar 

  56. Cox GN, Rosendahl MS, Chlipala EA, Smith DJ, Carlson SJ, Doherty DHA (2007) Long-acting, mono-PEGylated human growth hormone analog is a potent stimulator of weight gain and bone growth in hypophysectomized rats. Endocrinology 4: 1590–1597

    Google Scholar 

  57. Clark R, Olson K, Fuh G, Marian M, Mortensen D, Teshima G, Chang S, Chu H, Mukku V, Canova-Davis E (1996) Long-acting growth hormones produced by conjugation with polyethylene glycol. J. Biol. Chem 271: 21969–21977

    Article  PubMed  CAS  Google Scholar 

  58. Long DL, Doherty DH, Eisenberg SP, Smith DJ, Rosendahl MS, Christensen KR, Edwards DP, Chlipala EA, Cox GN (2006) Design of homogeneous, monopegylated erythropoietin analogs with preserved in vitro bioactivity. Experimental Hematology 34: 697–704

    Article  PubMed  CAS  Google Scholar 

  59. Basu A, Yang K, Wang M, Liu S, Chintala R, Palm T, Zhao H, Peng P, Wu D, Zhang Z et al. (2006) Structure-function engineering of interferon-beta-1b for improving stability, solubility, potency, immunogenicity, and pharmacokinetic properties by site-selective mono-PEGylation. Bioconjug. Chem 17: 618–630

    Article  PubMed  CAS  Google Scholar 

  60. Bowen S, Tare N, Yamasaki T, Okabe M, Horii I, Eliason JF (1999) Relationship between molecular mass and duration of activity of polyethylene glycol conjugated granulocyte colony-stimulating factor mutein. Experimental Hematology 27: 425–432

    Article  PubMed  CAS  Google Scholar 

  61. Gaertner HF, Puigserver AJ (1992) Increased activity and stability of poly(ethylene glycol)-modified trypsin. Enzyme Micro. Technol 14: 150–155

    Article  CAS  Google Scholar 

  62. Federico R, Cona A, Caliceti P, Veronese FM (2006) Histaminase PEGylation: Preparation and characterization of a new bioconjugate for therapeutic application. J. Contr. Rel 115: 168–174

    Article  CAS  Google Scholar 

  63. Veronese FM, Caliceti P, Pastorino A, Schiavon O, Sartore L, Banci L, Scolaro LM (1989) Preparation, physico-chemical and pharmacokinetic characterization of monomethoxypoly(ethylene glycol)-derivatized superoxide dismutase. Journal of Contr. Rel 10: 145–154

    Article  CAS  Google Scholar 

  64. Lee SH, Lee S, Youn YS, Na DH, Chae SY, Byun Y, Lee KC (2005) Synthesis, characterization, and pharmacokinetic studies of PEGylated glucagon-like peptide-1. Bioconjug. Chem 16: 377–382

    Article  PubMed  CAS  Google Scholar 

  65. Fuertges F, Abuchowski A (1990) The clinical efficacy of poly (ethylene glycol)-modified proteins. J. Control Rel 11: 139–148

    Article  CAS  Google Scholar 

  66. Youn YS, Jeon JE, Chae SY, Lee S, Lee KC (2008) PEGylation improves the hypoglycaemic efficacy of intranasally administered glucagons-like peptide-1 in type 2 diabetic db/db mice. Diabetes Obes. MeTab. 10: 343–346

    Article  PubMed  CAS  Google Scholar 

  67. He H, Murby S, Warhurst G, Gifford L, Walker D, Ayrton J, Eastmond R, Rowland M (1998) Species differences in size discrimination in the paracellular pathway reflected by oral bioavailability of Poly(ethylene glycol) and D-peptides. J. Pharm. Sci 87: 626–633

    Article  PubMed  CAS  Google Scholar 

  68. Fishburn CS (2008) The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J. Pharm. Sci 97: 4167–4183

    Article  PubMed  CAS  Google Scholar 

  69. Filpula D, Zhao H (2008) Releasable PEGylation of proteins with customized linkers. Adv. Drug Deliv. Rev 60: 29–49

    Article  PubMed  CAS  Google Scholar 

  70. De Groot AS, Scott D (2007) Immunogenicity of protein therapeutics. Trends in Immunology 28: 482–490

    Article  PubMed  CAS  Google Scholar 

  71. Hermeling S, Crommelin DJ, Schellekens H, Jiskoot W (2004) Structure-immunogenicity relationships of therapeutic proteins. Pharmaceut. Res 21: 897–903

    Article  CAS  Google Scholar 

  72. Hermeling S, Schellekens H, Maas C, Gebbink MF, Crommelin DJ, Jiskoot W (2006) Antibody response to aggregated human interferon alpha2b in wild-type and transgenic immune tolerant mice depends on type and level of aggregation. J. Pharm. Sci 95: 1084–1096

    Article  PubMed  CAS  Google Scholar 

  73. Schellekens H (2005) Factors influencing the immunogenicity of therapeutic proteins. Nephrol. Dial. Transplant 20: 3–9

    Google Scholar 

  74. Wang QC, Pai LH, Debinski W, FitzGerald DJ, Pastan I (1993) Polyethylene glycol-modified chimeric toxin composed of transforming growth factor alpha and Pseudomonas exotoxin. Cancer Res 53: 4588–4594

    PubMed  CAS  Google Scholar 

  75. Filpula D, Zhao H (2008) Releasable PEGylation of proteins with customized linkers. Adv. Drug Deliv. Rev 60: 29–49

    Article  PubMed  CAS  Google Scholar 

  76. Tsutsumi Y, Onda M, Nagata S, Lee B, Kreitman RJ, Pastan I (2000) Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity. Proc. Natl. Acad. Sci 97: 8548–8553

    Article  PubMed  CAS  Google Scholar 

  77. Bouvier M, Wiley DC (1996) Antigenic peptides containing large PEG loops designed to extend out of the HLA-A2 binding site form stable complexes with class I major histocompatibility complex molecules. Proc. Natl. Acad. Sci. USA 93: 4583–4588

    Article  PubMed  CAS  Google Scholar 

  78. Roseng L, Tolleshaug H, Berg T (1992) Uptake, intracellular transport, and degradation of polyethylene glycol-modified asialofetuin in hepatocytes. J. Biol. Chem 267: 22987–22993

    PubMed  CAS  Google Scholar 

  79. Rajan RS, Li T, Aras M, Sloey C, Sutherland W, Arai H, Briddell R, Kinstler O, Lueras AM, Zhang Y et al. (2006) Modulation of protein aggregation by polyethylene glycol conjugation: GCSF as a case study. Protein Sci 15: 1063–1075

    Article  PubMed  CAS  Google Scholar 

  80. Veronese FM, Mero A, Caboi F, Sergi M, Marongiu C, Pasut G (2007) Site-specific pegylation of G-CSF by reversible denaturation. Bioconjug. Chem 18: 1824–1830

    Article  PubMed  CAS  Google Scholar 

  81. Schellekens H (2002) Immunogenicity of therapeutic proteins: clinical implications and future prospects. Clin. Ther 24: 1720–1740

    Article  PubMed  CAS  Google Scholar 

  82. Kamisaki Y, Wada H, Yagura T, Matsushima A, Inada Y (1981) Reduction in immunogenicity and clearance rate of Escherichia coli L-asparaginase by modification with monomethoxypolyethylene glycol. J. Pharmacol. Exp. Ther 216: 410–414

    PubMed  CAS  Google Scholar 

  83. Yang Z, Wang J, Lu Q, Xu J, Kobayashi Y, Takakura T, Takimoto A, Yoshioka T, Lian C, Chen C et al. (2004) PEGylation confers greatly extended half-life and attenuated immunogenicity to recombinant methioninase in primates. Cancer Res 64: 6673–6678

    Article  PubMed  CAS  Google Scholar 

  84. Walsh S, Shah A, Mond J (2003) Improved pharmacokinetics and reduced antibody reactivity of lysostaphin conjugated to polyethylene glycol. Antimicrobial Agents And Chemotherapy 47: 554–558

    Article  PubMed  CAS  Google Scholar 

  85. An Q, Lei Y, Jia N, Zhang X, Bai Y, Yi J, Chen R, Xia A, Yang J, Wei S (2007) Effect of site-directed PEGylation of trichosanthin on its biological activity, immunogenicity, and pharmacokinetics. Biomolec. Engineer 24: 643–649

    Article  CAS  Google Scholar 

  86. Tillmann HC, Kuhn B, Kränzlin B, Sadick M, Gross J, Gretz N, Pill J (2006) Efficacy and immunogenicity of novel erythropoietic agents and conventional rhEPO in rats with renal insufficiency. Kidney International 69: 60–67

    Article  PubMed  CAS  Google Scholar 

  87. Inada Y, Takahashi K, Yoshimoto T, Ajima A, Matsushima A, Saito Y (1986) Application of polyethylene glycol-modified enzymes in biotechnological processes: Organic solvent-soluble enzymes. Trends in Biotechnol 4: 190–194

    Article  CAS  Google Scholar 

  88. Secundo G, Ottlina G, Carrea G (2008) Preparation and properties in organic solvents of noncovalent PEG-enzyme complexes. Methods in Biotechnology 15: 77–81

    Google Scholar 

  89. Carrea G, Riva S (2000) Properties and synthetic applications of enzymes in organic solvents. Angewand. Chem. Intern. Ed 39: 2226–2254

    Article  CAS  Google Scholar 

  90. Yamamoto Y, Kise H (1993) Catalysis of enzyme aggregates in organic solvents: An attempt at evaluation of intrinsic activity of proteases in ethanol. Biotechnol. Lett 15: 647–652

    Article  CAS  Google Scholar 

  91. Hernáiz M J, Sánchez-Montero JM, Sinisterra JV (1997) Influence of the nature of modifier in the enzymatic activity of chemical modified semipurified lipase from Candida rugosa. Biotechnol. Bioeng 55: 252–260

    Article  PubMed  Google Scholar 

  92. Jene Q, Pearson JC, Lowe CR (1997) Surfactant modified enzymes: solubility and activity of surfactant-modified catalase in organic solvents. Enzyme Microb. Technol 20: 69–74

    Article  CAS  Google Scholar 

  93. DeSantis G, Jones JB (1999) Chemical modification of enzymes for enhanced functionality. Current Opinion in Biotechnology 10: 324–330

    Article  PubMed  CAS  Google Scholar 

  94. Castillo B, Sola R, Ferrer A, Barletta G, Griebenow K (2008) Effect of PEG modification on subtilisin carlsberg activity, enantioselectivity, and structural dynamics in 1,4-dioxane. Biotechnology and Bioeng 99: 9–17

    Article  CAS  Google Scholar 

  95. Veronese FM, Mammuccari C, Schiavon F, Schiavon O, Lora S, Secundo F, Chilin A, Guiotto A (2000) PEGylated enzyme entrapped in poly(vinyl alcohol) hydrogel for biocatalytic application. Il Farmaco 56: 541–547

    Article  Google Scholar 

  96. Wang M, Basu A, Palm T, Hua J, Youngster S, Hwang L, Liu HC, Li X, Peng P, Zhang Y et al. (2006) Engineering an arginine catabolizing bioconjugate: Biochemical and pharmacological characterization of PEGylated derivatives of arginine deiminase from Mycoplasma arthritidis. Bioconjug. Chem 17: 1447–1459

    Article  PubMed  CAS  Google Scholar 

  97. Sundy JS, Ganson NJ, Kelly SJ, Scarlett EL, Rehing CD, Huang W, Hershfield MS (2007) Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout. Arthritis Rheum 56: 1021–1028

    Article  PubMed  CAS  Google Scholar 

  98. Tanaka H, Satake-Ishikawa R, Ishikawa M, Matsuki S, Asano K (1991) Pharmacokinetics of recombinant human granulocyte colony-stimulating factor conjugated to polyethylene glycol in rats. Cancer Res 51: 3710–3714

    PubMed  CAS  Google Scholar 

  99. Baker DP, Lin EY, Lin K, Pellegrini M, Petter RC, Chen LL, Arduini RM, Brickelmaier M, Wen D, Hess DM et al. (2006) N-terminally PEGylated human interferon-beta-la with improved pharmacokinetic properties and in vivo efficacy in a melanoma angiogenesis model. Bioconjug. Chem 17: 179–188

    Article  PubMed  CAS  Google Scholar 

  100. Tsutsumi Y, Kihira T, Tsunoda S, Okada N, Kaneda Y, Ohsugi Y, Miyake M, Nakagawa S, Mayumi T (1995) Polyethylene glycol modification of interleukin-6 enhances its thrombopoietic activity. J. Control Release 33: 447–451

    Article  CAS  Google Scholar 

  101. Yamamoto Y, Tsutsumi Y, Yoshioka Y, Nishibata T, Kobayashi K, Okamoto T, Mukai Y, Shimizu T, Nakagawa S, Nagata S (2003) Site-specific PEGylation of a lysine-deficient TNF-alpha with full bioactivity. Nat. Biotechnol 31:31

    Google Scholar 

  102. Youn YS, Jung JY, Oh SH, Yoo SD, Lee KC (2006) Improved intestinal delivery of salmon calcitonin by Lysl8-amine specific PEGylation: stability, permeability, pharmacokinetic behavior and in vivo hypocalcemie efficacy. J. Control Release 114: 334–342

    Article  PubMed  CAS  Google Scholar 

  103. Shin BS, Jung JH, Lee KC, Yoo SD (2004) Nasal absorption and pharmacokinetic disposition of salmon calcitonin modified with low molecular weight polyethylene glycol. Chem. Pharm. Bull 52: 957–960

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Veronese, F.M., Mero, A., Pasut, G. (2009). Protein PEGylation, basic science and biological applications. In: Veronese, F.M. (eds) PEGylated Protein Drugs: Basic Science and Clinical Applications. Milestones in Drug Therapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8679-5_2

Download citation

Publish with us

Policies and ethics