Skip to main content

The role of endothelial cell-selective adhesion molecule (ESAM) in neutrophil emigration into inflamed tissues

  • Chapter
Adhesion Molecules: Function and Inhibition

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Leukocyte emigration into inflamed tissues is among the most intensely pursued topics in the field of inflammation. Research focuses on the molecular factors activating endothelial cells and leukocytes, the adhesive molecules facilitating the contact between both cell types and the mechanisms allowing leukocytes to transmigrate through the blood vessel endothelium. In the last few years, studies have been intensified to understand how leukocytes, once captured to the vessel wall overcome the barrier made of endothelial cells linked to each other by interendothelial junctions. The mechanisms by which these leukocytes traverse the endothelial cell layer to reach the underlying tissue, a process called diapedesis, are largely unknown. Whereas convincing evidence has been published that polymorphonuclear leukocytes (PMN) can indeed migrate through endothelial cells in a transcellular fashion in vivo [1] as well as in vitro [2], careful quantitative analysis has demonstrated that at least in vitro the majority of PMNs and other leukocytes migrate via a paracellular route through the contact areas between endothelial cells [2, 3]. Consequently, a number of endothelial cell contact proteins such as PECAM-1, members of the junctional adhesion molecule family (JAM-A, -B and -C), CD99 and ICAM-2 have been reported to support leukocyte extravasation [47] . PECAM-1 was the first of these proteins that was identified in the context of leukocyte extravasation [8]. Its relevance for neutrophil extravasation is well established [9]. Although PECAM-1, JAM-A and ICAM-2 were shown by intravital microscopy to be involved in the transmigration process in vivo, the detailed molecular mechanism by which they participate in the process is still unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Feng D, Nagy JA, Pyne K, Dvorak HF, Dvorak AM (1998) Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J Exp Med 187: 903–915

    Article  PubMed  CAS  Google Scholar 

  2. Carman CV, Springer TA (2004) A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol 167: 377–388

    Article  PubMed  CAS  Google Scholar 

  3. Millan JL, Hewlett L, Glyn M, Toomre D, Clark P, Ridley AJ (2006) Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola-and F-actin-rich domains. Nat Cell Biol 8: 113–123

    Article  PubMed  CAS  Google Scholar 

  4. Muller WA (2003) Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol 24: 326–333

    Article  Google Scholar 

  5. Imhof BA, Aurrand-Lions M (2004) Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol 4: 432–444

    Article  PubMed  CAS  Google Scholar 

  6. Bixel G, Kloep S, Butz S, Petri B, Engelhardt B, Vestweber D (2004) Mouse CD99 participates in T cell recruitment into inflamed skin. Blood 104: 3205–3213

    Article  PubMed  CAS  Google Scholar 

  7. Huang MT, Larbi KY, Scheiermann C, Woodfin A, Gerwin N, Haskard DO, Nourshargh S (2006) ICAM-2 mediates neutrophil transmigration in vivo: Evidence for stimulus specificity and a role in PECAM-1-independent transmigration. Blood 107: 4721–4727

    Article  PubMed  CAS  Google Scholar 

  8. Muller WA, Weigl SA, Deng X, Phillips DM (1993) PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 178: 449–460

    Article  PubMed  CAS  Google Scholar 

  9. Schenkel AR, Chew TW, Muller WA (2004) Platelet endothelial cell adhesion molecule deficiency or blockade significantly reduces leukocyte emigration in a majority of mouse strains. J Immunol 173: 6403–6408

    PubMed  CAS  Google Scholar 

  10. Gotsch U, Borges E, Bosse R, Böggemeyer E, Simon M, Mossmann H, Vestweber D (1997) VE-cadherin antibody accelerates neutrophil recruitment in vivo. J Cell Sci 110: 583–588

    PubMed  CAS  Google Scholar 

  11. Hirata K, Ishida T, Penta K, Rezaee M, Yang E, Wohlgemuth J, Quertermous T (2001) Cloning of an immunoglobulin family adhesion molecule selectively expressed by endothelial cells. J Biol Chem 276: 16223–16231

    Article  CAS  Google Scholar 

  12. Nasdala I, Wolburg-Buchholz K, Wolburg H, Kuhn A, Ebnet K, Brachtendorf G, Samulowitz U, Kuster B, Engelhardt B, Vestweber D et al (2002) A transmembrane tight junction protein selectively expressed on endothelial cells and platelets. J Biol Chem 277: 16294–16303

    Article  PubMed  CAS  Google Scholar 

  13. Chretien I, Robert J, Marcuz A, Garcia-Sanz JA, Courtet M, Du Pasquier L (1996) CTX, a novel molecule specifically expressed on the surface of cortical thymocytes in Xenopus. Eur J Immunol 26: 780–791

    Article  PubMed  CAS  Google Scholar 

  14. Chretien I, Marcuz A, Courtet M, Katevuo K, Vainio O, Heath JK, White SJ, Du Pasquier L (1998) CTX, a Xenopus thymocyte receptor, defines a molecular family conserved throughout vertebrates. Eur J Immunol 28: 4094–4104

    Article  PubMed  CAS  Google Scholar 

  15. Tomko RP, Xu R, Philipson L (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 94: 3352–3356

    Article  PubMed  CAS  Google Scholar 

  16. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275: 1320–1323

    Article  PubMed  CAS  Google Scholar 

  17. Suzu S, Hayashi Y, Harumi T, Nomaguchi K, Yamada M, Hayasawa H, Motoyoshi K (2002) Molecular cloning of a novel immunoglobulin superfamily gene preferentially expressed by brain and testis. Biochem Biophys Res Commun 296: 1215–1221

    Article  PubMed  CAS  Google Scholar 

  18. Hirabayashi S, Tajima M, Yao I, Nishimura W, Mori H, Hata Y (2003) JAM4, a junctional cell adhesion molecule interacting with a tight junction protein, MAGI-1. Mol Cell Biol23:4267–4282

    Article  PubMed  CAS  Google Scholar 

  19. Martin-Padura I, Lostaglio S, Schneemann M, Williams L, Romano M, Fruscella P, Panzeri C, Stoppacciaro A, Ruco L, Villa A et al (1998) Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol 142: 117–127

    Article  PubMed  CAS  Google Scholar 

  20. Malergue F, Galland F, Martin F, Mansuelle P, Aurrand-Lions M, Naquet P (1998) A novel immunoglobulin superfamily junctional molecule expressed by antigen presenting cells, endothelial cells and platelets. Mol Immunol 35: 1111–1119

    Article  PubMed  CAS  Google Scholar 

  21. Aurrand-Lions MA, Duncan L, Du Pasquier L, Imhof BA(2000) Cloning of JAM-2 and JAM-3: an emerging junctional adhesion molecular family? Curr Top Microbiol Immunol 251: 91–98

    PubMed  CAS  Google Scholar 

  22. Cunningham SA, Arrate MP, Rodriguez JM, Bjercke RJ, Vanderslice P, Morris AP, Brock TA (2000) A novel protein with homology to the junctional adhesion molecule. Characterization of leukocyte interactions. J Biol Chem 275: 34750–34756

    Article  PubMed  CAS  Google Scholar 

  23. Palmeri D, van Zante A, Huang CC, Hemmerich S, Rosen SD (2000) Vascular endothelial junction-associated molecule, a novel member of the immunoglobulin superfamily, is localized to intercellular boundaries of endothelial cells. J Biol Chem 275: 19139–19145

    Article  PubMed  CAS  Google Scholar 

  24. Wegmann F, Ebnet K, Du Pasquier L, Vestweber D, Butz S(2004) Endothelial adhesion molecule ESAM binds directly to the multidomain adaptor MAGI-1 and recruits it to cell contacts. Exp Cell Res 300: 121–133

    Article  PubMed  CAS  Google Scholar 

  25. Arrate MP, Rodriguez JM, Tran TM, Brock TA, Cunningham SA (2001) Cloning of human junctional adhesion molecule 3 (JAM3) and its identification as the JAM2 counter-receptor. J Biol Chem 276: 45826–45832

    Article  PubMed  CAS  Google Scholar 

  26. Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S (2001) Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 154: 491–497

    Article  PubMed  CAS  Google Scholar 

  27. Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer-zu-Brickwedde MK, Ohno S, Vestweber D (2001) The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J 20:3738–3748

    Article  PubMed  CAS  Google Scholar 

  28. Ebnet K, Aurrand-Lions M, Kuhn A, Kiefer F, Butz S, Zander K, Meyer zu Brickwedde MK, Suzuki A, Imhof BA, Vestweber D (2003) The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: a possible role for JAMs in endothelial cell polarity. J Cell Sci 116: 3879–3891

    Article  PubMed  CAS  Google Scholar 

  29. Ebnet K, Suzuki A, Ohno S, Vestweber D (2004) Junctional adhesion molecules (JAMs): more molecules with dual functions? J Cell Sci 117: 19–29

    Article  PubMed  CAS  Google Scholar 

  30. Liang TW, Chiu HH, Gurney A, Sidle A, Tumas DB, Schow P, Foster J, Klassen T, Dennis K, De Marco RA et al (2002) Vascular endothelial-junctional adhesion molecule (VE-JAM)/JAM 2 interacts with T, NK, and dendritic cells through JAM 3. J Immunol 168:1618–1626

    PubMed  CAS  Google Scholar 

  31. Wegmann F, Petri J, Khandoga AG, Moser C, Khandoga A, Volkery S, Li H, Nasdala I, Brandau O, Fassler R et al (2006) ESAM supports neutrophil extravasation, activation of Rho and VEGF-induced vascular permeability. J Exp Med 203: 1671–1677

    Article  PubMed  CAS  Google Scholar 

  32. Ishida T, Kundu RK, Yang E, Hirata K, Ho YD, Quertermous T (2003) Targeted disruption of endothelial cell-selective adhesion molecule inhibits angiogenic processes in vitro and in vivo. J Biol Chem 278: 34598–34604

    Article  PubMed  CAS  Google Scholar 

  33. Ostermann G, Weber KS, Zernecke A, Schroder A, Weber C (2002) JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 3: 151–158

    Article  PubMed  CAS  Google Scholar 

  34. Mempel TR, Moser C, Hutter J, Kuebler WM, Krombach F (2003) Visualization of leukocyte transendothelial and interstitial migration using reflected light oblique transillumination in intravital video microscopy. J Vasc Res 40: 435–441

    Article  PubMed  Google Scholar 

  35. Wakelin MW, Sanz MJ, Dewar A, Albelda SM, Larkin SW, Boughton-Smith N, Williams TJ, Nourshargh S (1996) An anti-platelet-endothelial cell adhesion molecule-1 antibody inhibits leukocyte extravasation from mesenteric microvessels in vivo by blocking the passage through the basement membrane. J Exp Med 184: 229–239

    Article  PubMed  CAS  Google Scholar 

  36. Khandoga A, Kessler JS, Meissner H, Hanschen M, Corada M, Motoike T, Enders G, Dejana E, Krombach F (2005) Junctional adhesion molecule-A deficiency increases hepatic ischemia-reperfusion injury despite reduction of neutrophil transendothelial migration. Blood 106: 725–733

    Article  PubMed  CAS  Google Scholar 

  37. Orlova VV, Economopoulou M, Lupu F, Santoso S, Chavakis T (2006) Junctional adhesion molecule-C regulates vascular endothelial permeability by modulating VE-cadherin-mediated cell-cell contacts. J Exp Med 203: 2703–2714

    Article  PubMed  CAS  Google Scholar 

  38. Strey A, Janning A, Barth H, Gerke V (2002) Endothelial Rho signaling is required for monocyte transendothelial migration. FEBS Lett 517: 261–266

    Article  PubMed  CAS  Google Scholar 

  39. Saito H, Minamiya Y, Saito S, Ogawa J (2002) Endothelial Rho and Rho kinase regulate neutrophil migration via endothelial myosin light chain phosphorylation. J Leukoc Biol 72: 829–836

    PubMed  CAS  Google Scholar 

  40. Stamatovic SM, Keep RF, Kunkel SL, Andjelkovic AV (2003) Potential role of MCP-1 in endothelial cell tight junction ‘opening’: signaling via Rho and Rho kinase. J Cell Sci 116:4615–4628

    Article  PubMed  CAS  Google Scholar 

  41. Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV (2006) Protein kinase Calpha: RhoA cross talk in CCL2-induced alterations in brain endothelial permeability. J Biol Chem 281: 8379–8388

    Article  PubMed  CAS  Google Scholar 

  42. Persidsky Y, Heilman D, Haorah J, Zelivyanskaya M, Persidsky R, Weber GA, Shimokawa H, Kaibuchi K, Ikezu T (2006) Rho-mediated regulation of tight junctions during monocyte migration across blood-brain barrier in HIV-1 encephalitis (HIVE). Blood 107:4770–4780

    Article  PubMed  CAS  Google Scholar 

  43. Dobrosotskaya IY (2001) Identification of mNET1 as a candidate ligand for the first PDZ domain of MAGI-1. Biochem Biophys Res Commun 283: 969–975

    Article  PubMed  CAS  Google Scholar 

  44. Etienne S, Adamson P, Greenwood J, Strosberg AD, Cazaubon S, Couraud PO (1998) ICAM-1 signaling pathways associated with Rho activation in microvascular brain endothelial cells. J Immunol 161: 5755–5761

    PubMed  CAS  Google Scholar 

  45. Adamson P, Etienne S, Couraud PO, Calder V, Greenwood J (1999) Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a rho-dependent pathway. J Immunol 162: 2964–2973

    PubMed  CAS  Google Scholar 

  46. Esser S, Lampugnam MG, Corada M, Dejana E, Risau W (1998) Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 111:1853–1865

    PubMed  CAS  Google Scholar 

  47. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW (1999) Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem274: 23463–23467

    Article  PubMed  CAS  Google Scholar 

  48. Pedram A, Razandi M, Levin ER (2002) Deciphering vascular endothelial cell growth factor/vascular permeability factor signaling to vascular permeability. Inhibition by atrial natriuretic peptide. J Biol Chem 277: 44385–44398

    Article  PubMed  CAS  Google Scholar 

  49. Weis S, Shintani S, Weber A, Kirchmair R, Wood M, Cravens A, McSharry H, Iwakura A, Yoon YS, Himes N et al (2004) Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J Clin Invest 113: 885–894

    Article  PubMed  CAS  Google Scholar 

  50. Gavard J, Gutkind JS (2006) VEGF controls endothelial-cell permeability by promoting the β-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8: 1223–1234

    Article  PubMed  CAS  Google Scholar 

  51. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4: 915–924

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Butz, S., Vestweber, D. (2007). The role of endothelial cell-selective adhesion molecule (ESAM) in neutrophil emigration into inflamed tissues. In: Ley, K. (eds) Adhesion Molecules: Function and Inhibition. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7975-9_11

Download citation

Publish with us

Policies and ethics