Skip to main content

Linear Transformations of ℝN and Problems of Convergence of Fourier Series of Functions Which Equal Zero on Some Set

  • Conference paper
Book cover Wavelet Analysis and Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

Let \( \mathfrak{M} \) be a class of (all) linear transformations of ℝN, N ≥ 1. Let \( \mathcal{A} = \mathcal{A}{\text{(}}\mathbb{T}^N {\text{),}}\mathbb{T}^N = [ - \pi ,\pi )^N \) be some linear subspace of \( L_{\text{1}} {\text{(}}\mathbb{T}^N {\text{)}} \), and let \( \mathfrak{A} \) be an arbitrary set of positive measure \( \mathfrak{A} \subset \mathbb{T}^N \).

We consider the problem: how are the sets of convergence and divergence everywhere or almost everywhere (a.e.) of trigonometric Fourier series (in case N ≥ 2 summed over rectangles) of function \( (f \circ \mathfrak{m})(x) = f(\mathfrak{m}(x)),f \in \mathcal{A} \), \( f(x) = 0{\text{ }}on \mathfrak{A}, \mathfrak{m} \in \mathfrak{M} \), changed depending on the smoothness of the function f (i.e. on the space \( \mathcal{A} \)), as well as on the transformation \( \mathfrak{m} \).

In the paper a (wide) class of spaces \( \mathcal{A} \) is found such that for each \( \mathcal{A} \) the system of classes (of nonsingular linear transformations) \( \Psi _k ,\Psi _k \subset \mathfrak{M} \) (k = 0, 1 , . . ., N), which “change” the sets of convergence and divergence everywhere or a.e. of the indicated Fourier expansions is defined.

This work was supported by grant 05-01-00206 of the Russian Foundation for Fundamental Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. E. Men’shov, Sur les Sértes de Fourier des Fonctions Continues. Mat. Sb. 8 (1940), 493–518.

    Google Scholar 

  2. A. M. Olevskii, Change of Variable and Absolute Convergence of Fourier Series. Dokl.Akad. Nauk USSR 256 (1981),284–287; English transl. in Soviet Math. Dokl. 23 (1981),284–287.

    MathSciNet  Google Scholar 

  3. H. Bohr, Über einen Satz von J.Pal. Acta Sci. Math. 7 (1935), 129–135.

    MATH  Google Scholar 

  4. J. P. Kahane, Quatre Lecons sur les Homeomorphismes du Cercle et les Series de Fourier. Roma: Proc. Sem. Torino and Milano 2 (1983), 955–990.

    Google Scholar 

  5. A. M. Olevskii, Modifications of Functions and Fourier Series. Uspekhi-Mat.-Nauk 40 (1985) 157–193; English transl. in Russ. Math. Surv. 40 (1985)

    MathSciNet  Google Scholar 

  6. A. M. Olevskii, Homeomorphisms of the Circle, Modifications of Functions and Fourier Series. Proc. Internat. Congr. Math., Berkley. 2 (1986), 976–989; Amer. Math. Soc. Transl. 2 (1990), 51–64.

    Google Scholar 

  7. A. A. Saakyan, On Bohr’s Theorem for Multiple Fourier Series. Mat. Zametki. 64 (1998), 913–924; English transl. in Math. Notes 64(1998).

    MathSciNet  Google Scholar 

  8. Ch. Fefferman, On the Divergence of Multiple Fourier Series. Bull. Amer. Math. Soc. 77 (1971), 191–195.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Sh. Galstyan, G. A. Karagulyan, Divergence Almost Everywhere of Rectangular Partial Sums of Multiple Fourier Series of Bounded Functions. Mat. Zametki. 64 (1998), 24–36; English transl. in Math. Notes 64 (1998).

    MathSciNet  Google Scholar 

  10. O. S. Dragoshanskii, On Convergence of Double Fourier Series of Functions on T 2 and2 Under Rotations of the System of Coordinates Mat. Sb. 191 (2000), 87–110; English transl. in: Math. USSR Sb. 191 (2000).

    MathSciNet  Google Scholar 

  11. I. L. Bloshanskii, A Criterion for Weak Generalized Localization in the Class L 1 for Multiple Trigonometric Fourier Series from the Viewpoint of Isometric Transformations. Mat. Zametki. 71 (2002), 508–521; English transl. in: Math. Notes 71(2002).

    MathSciNet  Google Scholar 

  12. I. L. Bloshanskii, Some Problems of Multidimensional Harmonic Analysis. Author’s summary of Doctoral dissertation, Steklov Math. Inst. Acad. Sci. USSR, Moscow, 1991. (Russian)

    Google Scholar 

  13. I. L. Bloshanskii, On Convergence and Localization of Multiple Fourier Series and Integrals. Author’s summary of Candidate’s dissertation, Moscow State Univ., Moscow, 1978. (Russian)

    Google Scholar 

  14. I. L. Bloshanskii, On Geometry of Measurable Sets in N— dimensional Space, on which the Generalized Localization is True for Multiple Trigonometric Fourier Series of Functions in L p, p > 1. Mat. Sb. 121(1983), 87–110; English transl. in Math. USSR-Sb. 49(1984).

    MathSciNet  Google Scholar 

  15. I. L. Bloshanskii, Two Criteria for Weak Generalized Localization for Multiple Trigonometric Fourier Series of Functions in L p, p ≥ 1. Izv. Akad. Nauk SSSR. Ser. Mat. 49 (1985), 243–282; English transl. in Math. USSR Izv. 26 (1986).

    MathSciNet  Google Scholar 

  16. I. L. Bloshanskii, On Some Questions of Square Convergence of Multiple Fourier Series and Integrals of Functions in L 1. Dokl.Akad. Nauk USSR 294 (1987), 15–18; English transl. in Sov. Math. Dokl. 35 (1987).

    MathSciNet  Google Scholar 

  17. I. L. Bloshanskii, The Structure and Geometry of Maximal Sets of Convergence and Unbounded Divergence Almost Everywhere of Multiple Fourier Series of Functions in L 1 Vanishing on a Given Set. Izv. Akad. Nauk SSSR. Ser. Mat. 53 (1989), 675–707; English transl. in Math. USSR Izv. 35 (1990).

    Google Scholar 

  18. I. L. Bloshanskii, O. K. Ivanova, T. Yu. Roslova, Generalized Localization and Equiconvergence of Expansions in Double Trigonometric Fourier Series and Fourier Integral of Functions in L(ln + L)2, Mat. Zametki. 60 (1996), 437–441; English transl. in: Math. Notes 60(1996).

    MathSciNet  Google Scholar 

  19. L. Carleson, On Convergence and Growth of Partial Sums of Fourier Series. Acta Math. 116 (1966), 135–157.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. Hunt, On the Convergence of Fourier Series. Not. Amer. Math. Soc. 14 (1967), 537.

    Google Scholar 

  21. K. I. Oskolkov, Estimate of Degree of Approximation of Continuous Function and its Conjugate by Fourier Sums on the Set of Full Measure. Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1339–1407; English transl. in Math. USSR Izv. 8 (1974).

    MathSciNet  Google Scholar 

  22. P. Sjölin, Convergence Almost Everywhere of Certain Singular Integrals and Multiple Fourier Series. Arkiv Matem. 9 (1971), 65–90.

    Article  MATH  Google Scholar 

  23. L. V. Zhizhiashvili, Convergence of Multiple Trigonometric Fourier Series. Bull. Acad.Sci. Georgian SSR, 80 (1975), 17–19.

    MATH  Google Scholar 

  24. L. V. Zhizhiashvili, Trigonometric Series and Their Conjugates. Kluwer Acad. Publ. (1996).

    Google Scholar 

  25. F. Móricz, Lebesque Functions and Multiple Function Series. I, Acta Math. Acad Sci. Hungar. 37 (1981), 481–496.

    Article  MATH  Google Scholar 

  26. I.L. Bloshanskii, Structural and Geometric Characteristics of Sets of Convergence and Divergence of Multiple Fourier Series of Functions which Equal Zero on Some Set. Intern. J. of Wavelets, Multiresolution and Inform. Processing 2 (2004), 187–195.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Bloshanskii, I.L. (2006). Linear Transformations of ℝN and Problems of Convergence of Fourier Series of Functions Which Equal Zero on Some Set. In: Qian, T., Vai, M.I., Xu, Y. (eds) Wavelet Analysis and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7778-6_2

Download citation

Publish with us

Policies and ethics