Skip to main content

Modular Lines for Singularities of the T-series

  • Conference paper
Real and Complex Singularities

Part of the book series: Trends in Mathematics ((TM))

  • 674 Accesses

Abstract

Unimodular functions have a μ-constant line in their miniversal unfoldings. Their miniversal deformations on the other hand contain a nontrivial τ-constant stratum only for the three cases of elliptic singularities. In computer experiments we found six sub-series of the T-series, which have a modular line in the their miniversal deformations. The singular locus of the family restricted to such a line splits into an elliptic singularity and another one of A k-type, such that the deformation is τ-constant along the modular line. Each modular line can be patched together with the modular line of the associated elliptic singularity, completing it at infinity. All computations are based on the author’s algorithm for computing modular spaces as flatness stratum of the relative cotangent cohomology inside a deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.G. Alexandrov, Cohomology of a quasihomogeneous complete intersection, Izv. Akad. Nauk SSSR Ser. Mat. 49(3), (1985), 467–510.

    MathSciNet  Google Scholar 

  2. V.I. Arnol’d, S.M. Gusein-Zade, A.N. Varchenko, it Singularities of differentiable maps Vol. I, Brikhäuser, (1985).

    Google Scholar 

  3. E. Brieskorn, H. Knörrer, Ebene algebraische Kurven, Birkhäuser, (1981).

    Google Scholar 

  4. O.A. Laudal, Formal moduli of algebraic structures, Lecture Notes in Math. 754, Springer-Verlag, Berlin-New York, (1979).

    MATH  Google Scholar 

  5. T. Hirsch, B. Martin, Deformations with sections: Cotangent cohomology, flatness and modular subspaces, Contem. math. and its appl., 15, (2004), 49–70.

    Google Scholar 

  6. B. Martin, Algorithmic computation of flattenings and of modular deformations, J. Symbolic Computation 34 (2002), no. 3, 199–212.

    Article  Google Scholar 

  7. B. Martin, Modular deformation and Space Curve Singularities, Rev. Mat. Iberoamericana 19 (2003), no. 2, 613–621.

    MathSciNet  Google Scholar 

  8. V.P. Palamodov, Moduli and versal deformations of complex spaces, in: Variétés analytiques compactes, LNM 683 Springer-Verlag, Berlin-New York, (1978), 74–115.

    Chapter  Google Scholar 

  9. V.P. Palamodov, Deformation of analytic polyhedrons, J. Algebraic Geometry 2, (1993), 263–294.

    MathSciNet  Google Scholar 

  10. K. Saito, Einfach-elliptische Singularitäten, Invent. Math. 23, (1974), 289–325.

    Article  MathSciNet  Google Scholar 

  11. G.-M. Greuel, G. Pfister, H. Schnemann, Singular 2.0, University of Kaiserslautern, 2002, http://www.singular.uni-kl.de.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Martin, B. (2006). Modular Lines for Singularities of the T-series. In: Brasselet, JP., Ruas, M.A.S. (eds) Real and Complex Singularities. Trends in Mathematics. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7776-2_16

Download citation

Publish with us

Policies and ethics