Skip to main content

Forebrain dopaminergic-cholinergic interactions, attentional effort, psychostimulant addiction and schizophrenia

  • Chapter
Neurotransmitter Interactions and Cognitive Function

Part of the book series: Experientia Supplementum ((EXS,volume 98))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Semba K (2000) Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav Brain Res 115: 117–141

    PubMed  CAS  Google Scholar 

  2. Woolf NJ (1991) Cholinergic systems in mammalian brain and spinal cord. Prog Neurobiol 37: 475–524

    PubMed  CAS  Google Scholar 

  3. Zaborszky L, Pang K, Somogyi J, Nadasdy Z, Kallo I (1999) The basal forebrain corticopetal system revisited. Ann N Y Acad Sci 877: 339–367

    PubMed  CAS  Google Scholar 

  4. Sarter M, Bruno JP (2002) The neglected constituent of the basal forebrain corticopetal projection system: GABAergic projections. Eur J Neurosci 15: 1867–1873

    PubMed  Google Scholar 

  5. McGaughy J, Everitt BJ, Robbins TW, Sarter M (2000) The role of cortical cholinergic afferent projections in cognition: impact of new selective immunotoxins. Behav Brain Res 115: 251–263

    PubMed  CAS  Google Scholar 

  6. Sarter M, Givens B, Bruno JP (2001) The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Rev 35: 146–160

    PubMed  CAS  Google Scholar 

  7. Sarter M, Bruno JP (2000) Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience 95: 933–952

    PubMed  CAS  Google Scholar 

  8. Sarter M, Bruno JP (1997) Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Rev 23: 28–46

    PubMed  CAS  Google Scholar 

  9. Sarter M, Bruno JP, Turchi J (1999) Basal forebrain afferent projections modulating cortical acetylcholine, attention, and implications for neuropsychiatric disorders. Ann N Y Acad Sci 877: 368–382

    PubMed  CAS  Google Scholar 

  10. Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Ann Rev Psychol 48: 649–684

    CAS  Google Scholar 

  11. Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28: 597–613

    PubMed  CAS  Google Scholar 

  12. Chiba AA, Bucci DJ, Holland PC, Gallagher M (1995) Basal forebrain cholinergic lesions disrupt increments but not decrements in conditioned stimulus processing. J Neurosci 15: 7315–7322

    PubMed  CAS  Google Scholar 

  13. Dalley JW, McGaughy J, O’Connell MT, Cardinal RN, Levita L, Robbins TW (2001) Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. J Neurosci 21: 4908–4914

    PubMed  CAS  Google Scholar 

  14. Voytko ML (1996) Cognitive functions of the basal forebrain cholinergic system in monkeys: memory or attention? Behav Brain Res 75: 13–25

    PubMed  CAS  Google Scholar 

  15. McGaughy J, Dalley JW, Morrison CH, Everitt BJ, Robbins TW (2002) Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. J Neurosci 22: 1905–1913

    PubMed  CAS  Google Scholar 

  16. McGaughy J, Kaiser T, Sarter M (1996) Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: selectivity of the behavioral impairment and relation to cortical AChE-positive fiber density. Behav Neurosci 110: 247–265

    PubMed  CAS  Google Scholar 

  17. Sarter M, Bruno JP, Givens B (2003) Attentional functions of cortical cholinergic inputs: what does it mean for memory? Neurobiol Learn Mem 80: 245–256

    PubMed  CAS  Google Scholar 

  18. Baxter MG, Murg SL (2002) The basal forebrain cholinergic system and memory. Beware of dogma. In: LR Squire, DL Schachter (eds): Neuropsychology of memory. The Guilford Press, New York, 425–436

    Google Scholar 

  19. Butt AE, Bowman TD (2002) Transverse patterning reveals a dissociation of simple and configural association learning abilities in rats with 192 IgG-saporin lesions of the nucleus basalis magnocellularis. Neurobiol Learn Mem 77: 211–233

    PubMed  Google Scholar 

  20. Berger-Sweeney J, Stearns NA, Frick KM, Beard B, Baxter MG (2000) Cholinergic basal forebrain is critical for social transmission of food preferences. Hippocampus 10: 729–738

    PubMed  CAS  Google Scholar 

  21. Weinberger NM (2003) The nucleus basalis and memory codes: auditory cortical plasticity and the induction of specific, associative behavioral memory. Neurobiol Learn Mem 80: 268–284

    PubMed  CAS  Google Scholar 

  22. Edeline JM (2003) The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Exp Brain Res 153: 554–572

    PubMed  Google Scholar 

  23. Sarter M, Hasselmo ME, Bruno JP, Givens B (2005) Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and top-down cholinergic modulation of signal detection. Brain Res Rev 48: 98–111

    PubMed  CAS  Google Scholar 

  24. Nelson CL, Sarter M, Bruno JP (2005) Prefrontal cortical modulation of acetylcholine release in the posterior parietal cortex. Neuroscience 132:347–359.

    PubMed  CAS  Google Scholar 

  25. Zaborszky L, Gaykema RP, Swanson DJ, Cullinan WE (1997) Cortical input to the basal forebrain. Neuroscience 79: 1051–1078

    PubMed  CAS  Google Scholar 

  26. Dalley JW, Theobald DE, Bouger P, Chudasama Y, Cardinal RN, Robbins TW (2004) Cortical cholinergic function and deficits in visual attentional performance in rats Following 192 IgG-Saporin-induced lesions of the medial prefrontal cortex. Cereb Cortex 14: 922–932

    PubMed  Google Scholar 

  27. Gill TM, Sarter M, Givens B (2000) Sustained visual attention performance-associated prefrontal neuronal activity: evidence for cholinergic modulation. J Neurosci 20: 4745–4757

    PubMed  CAS  Google Scholar 

  28. Posner MI, Petersen SE (1990) The attention system of the human brain. Ann Rev Neurosci 13: 25–42

    PubMed  CAS  Google Scholar 

  29. Kozak R, Bruno JP, Sarter M (2006) Augmented prefrontal acetylcholine release during challenged attentional performance. Cereb Cortex 16: 9–17

    PubMed  Google Scholar 

  30. Turchi J, Sarter M (2001) Bidirectional modulation of basal forebrain N-methyl-Daspartate receptor function differentially affects visual attention but not visual discrimination performance. Neuroscience 104: 407–417

    PubMed  CAS  Google Scholar 

  31. Arnold HM, Burk JA, Hodgson EM, Sarter M, Bruno JP (2002) Differential cortical acetylcholine release in rats performing a sustained attention task versus behavioral control tasks that do not explicitly tax attention. Neuroscience 114: 451–460

    PubMed  CAS  Google Scholar 

  32. Giovannini MG, Giovannelli L, Bianchi L, Kalfin R, Pepeu G (1997) Glutamatergic modulation of cortical acetylcholine release in the rat: a combined in vivo microdialysis, retrograde tracing and immunohistochemical study. Eur J Neurosci 9: 1678–1689

    PubMed  CAS  Google Scholar 

  33. Rasmusson DD, Szerb IC, Jordan JL (1996) Differential effects of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid and N-methyl-D-aspartate receptor antagonists applied to the basal forebrain on cortical acetylcholine release and electroencephalogram desynchronization. Neuroscience 72: 419–427

    PubMed  CAS  Google Scholar 

  34. Fadel J, Sarter M, Bruno JP (2001) Basal forebrain glutamatergic modulation of cortical acetylcholine release. Synapse 39: 201–212

    PubMed  CAS  Google Scholar 

  35. Berridge KC, Robinson TE (2003) Parsing reward. Trends Neurosci 26: 507–513

    PubMed  CAS  Google Scholar 

  36. Zaborszky L (1992) Synaptic organization of basal forebrain cholinergic projection neurons. In: E Levin, MW Decker, LL Butcher (eds): Neurotransmitter Interactions and Cognitive Function. Birkhäuser, Boston, 27–65

    Google Scholar 

  37. Zaborszky L, Cullinan WE (1992) Projections from the nucleus accumbens to cholinergic neurons of the ventral pallidum: a correlated light and electron microscopic double-immunolabeling study in rat. Brain Res 570: 92–101

    PubMed  CAS  Google Scholar 

  38. Dudchenko P, Sarter M (1991) GABAergic control of basal forebrain cholinergic neurons and memory. Behav Brain Res 42: 33–41

    PubMed  CAS  Google Scholar 

  39. Holley LA, Turchi J, Apple C, Sarter M (1995) Dissociation between the attentional effects of infusions of a benzodiazepine receptor agonist and an inverse agonist into the basal forebrain. Psychopharmacol 120: 99–108

    CAS  Google Scholar 

  40. Moore H, Sarter M, Bruno JP (1995) Bidirectional modulation of cortical acetylcholine efflux by infusion of benzodiazepine receptor ligands into the basal forebrain. Neurosci Lett 189: 31–34

    PubMed  CAS  Google Scholar 

  41. Moore H, Sarter M, Bruno JP (1993) Bidirectional modulation of stimulated cortical acetylcholine release by benzodiazepine receptor ligands. Brain Res 627: 267–274

    PubMed  CAS  Google Scholar 

  42. Sarter M, Bruno JP, Dudchenko P (1990) Activating the damaged basal forebrain cholinergic system: tonic stimulation versus signal amplification. Psychopharmacol 101: 1–17

    CAS  Google Scholar 

  43. Yang CR, Mogenson GJ (1989)Ventral pallidal neuronal responses to dopamine receptor stimulation in the nucleus accumbens. Brain Res 489: 237–246

    PubMed  CAS  Google Scholar 

  44. Nicola SM, Surmeier J, Malenka RC (2000) Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23: 185–215

    PubMed  CAS  Google Scholar 

  45. O’Donnell P, Grace AA (1993) Dopaminergic modulation of dye coupling between neurons in the core and shell regions of the nucleus accumbens. J Neurosci 13: 3456–3471

    PubMed  CAS  Google Scholar 

  46. Floresco SB, Blaha CD, Yang CR, Phillips AG (2001) Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input selection. J Neurosci 21: 2851–2860

    PubMed  CAS  Google Scholar 

  47. Floresco SB, Todd CL, Grace AA (2001) Glutamatergic afferents from the hippocampus to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons. J Neurosci 21: 4915–4922

    PubMed  CAS  Google Scholar 

  48. Meredith GE (1999) The synaptic framework for chemical signaling in nucleus accumbens. Ann N Y Acad Sci 877: 140–156

    PubMed  CAS  Google Scholar 

  49. Mulder AB, Hodenpijl MG, Lopes da Silva FH (1998) Electrophysiology of the hippocampal and amygdaloid projections to the nucleus accumbens of the rat: convergence, segregation, and interaction of inputs. J Neurosci 18: 5095–5102

    PubMed  CAS  Google Scholar 

  50. O’Donnell P (1999) Ensemble encoding in the nucleus accumbens. Psychobiology 27: 187–197

    Google Scholar 

  51. Brady AM, O’Donnell P (2004) Dopaminergic modulation of prefrontal cortical input to nucleus accumbens neurons in vivo. J Neurosci 24: 1040–1049

    PubMed  CAS  Google Scholar 

  52. Moore H, Fadel J, Sarter M, Bruno JP (1999) Role of accumbens and cortical dopamine receptors in the regulation of cortical acetylcholine release. Neuroscience 88: 811–822

    PubMed  CAS  Google Scholar 

  53. Moore H, Stuckman S, Sarter M, Bruno JP (1995) Stimulation of cortical acetylcholine efflux by FG 7142 measured with repeated microdialysis sampling. Synapse 21: 324–331

    PubMed  CAS  Google Scholar 

  54. Sarter M, Bruno JP, Berntson GG (2001) Psychotogenic properties of benzodiazepine receptor inverse agonists. Psychopharmacol 156: 1–13

    CAS  Google Scholar 

  55. Murphy BL, Arnsten AF, Goldman-Rakic PS, Roth RH (1996) Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci USA 93: 1325–1329

    PubMed  CAS  Google Scholar 

  56. Bassareo V, Tanda G, Petromilli P, Giua C, Di Chiara G (1996) Non-psychostimulant drugs of abuse and anxiogenic drugs activate with differential selectivity dopamine transmission in the nucleus accumbens and in the medial prefrontal cortex of the rat. Psychopharmacol 124: 293–299

    CAS  Google Scholar 

  57. Bradberry CW, Lory JD, Roth RH (1991) The anxiogenic beta-carboline FG 7142 selectively increases dopamine release in rat prefrontal cortex as measured by microdialysis. J Neurochem 56: 748–752

    PubMed  CAS  Google Scholar 

  58. Brose N, O’Neill RD, Boutelle MG, Anderson SM, Fillenz M (1987) Effects of an anxiogenic benzodiazepine receptor ligand on motor activity and dopamine release in nucleus accumbens and striatum in the rat. J Neurosci 7: 2917–2926

    PubMed  CAS  Google Scholar 

  59. Tam SY, Roth RH (1985) Selective increase in dopamine metabolism in the prefrontal cortex by the anxiogenic beta-carboline FG 7142. Biochem Pharmacol 34: 1595–1598

    PubMed  CAS  Google Scholar 

  60. McCullough LD, Salamone JD (1992) Anxiogenic drugs beta-CCE and FG 7142 increase extracellular dopamine levels in nucleus accumbens. Psychopharmacol 109: 379–382

    CAS  Google Scholar 

  61. Ninan I, Kulkarni SK (1999) Effect of olanzapine on behavioural changes induced by FG 7142 and dizocilpine on active avoidance and plus maze tasks. Brain Res 830: 337–344

    PubMed  CAS  Google Scholar 

  62. Murphy BL, Arnsten AF, Jentsch JD, Roth RH (1996) Dopamine and spatial working memory in rats and monkeys: pharmacological reversal of stress-induced impairment. J Neurosci 16: 7768–7775

    PubMed  CAS  Google Scholar 

  63. Murphy BL, Roth RH, Arnsten AF (1997) Clozapine reverses the spatial working memory deficits induced by FG7142 in monkeys. Neuropsychopharmacol 16: 433–437

    CAS  Google Scholar 

  64. Sarter M, Nelson CL, Bruno JP (2005) Cortical cholinergic transmission and cortical information processing following psychostimulant-sensitization: implications for models of schizophrenia. Schizophren Bull 31: 1–22

    Google Scholar 

  65. Neigh GN, Arnold HM, Rabenstein RL, Sarter M, Bruno JP (2004) Neuronal activity in the nucleus accumbens is necessary for performance-related increases in cortical acetylcholine release. Neuroscience 123: 635–645

    PubMed  CAS  Google Scholar 

  66. Neigh GN, Arnold HM, Sarter M, Bruno JP (2001) Dissociations between the effects of intra-accumbens administration of amphetamine and exposure to a novel environment on accumbens dopamine and cortical acetylcholine release. Brain Res 894: 354–358

    PubMed  CAS  Google Scholar 

  67. Zmarowski A, Sarter M, Bruno JP (2004) Modulation of cortical acetylcholine release via glutamatergic and D1 interactions in the nucleus accumbens. Society for Neuroscience Annual Meeting. Society for Neuroscience Abstracts, San Diego, CA, 950.914

    Google Scholar 

  68. Miner LA, Sarter M (1999) Intra-accumbens infusions of antisense oligodeoxynucleotides to one isoform of glutamic acid decarboxylase mRNA, GAD65, but not to GAD67 mRNA, impairs sustained attention performance in the rat. Cogn Brain Res 7: 269–283

    CAS  Google Scholar 

  69. Himmelheber AM, Bruno JP, Sarter M (2000) Effects of intra-accumbens infusions of amphetamine or cis-flupenthixol on sustained attention performance in rats. Behav Brain Res 116: 123–133

    PubMed  CAS  Google Scholar 

  70. Gaykema RP, Zaborszky L (1996) Direct catecholaminergic-cholinergic interactions in the basal forebrain. II. Substantia nigra-ventral tegmental area projections to cholinergic neurons. J Comp Neurol 374: 555–577

    PubMed  CAS  Google Scholar 

  71. Smiley JF, Subramanian M, Mesulam MM (1999) Monoaminergic-cholinergic interactions in the primate basal forebrain. Neuroscience 93: 817–829

    PubMed  CAS  Google Scholar 

  72. Rodrigo J, Fernandez P, Bentura ML, de Velasco JM, Serrano J, Uttenthal O, Martinez-Murillo R (1998) Distribution of catecholaminergic afferent fibres in the rat globus pallidus and their relations with cholinergic neurons. J Chem Neuroanat 15: 1–20

    PubMed  CAS  Google Scholar 

  73. Napier TC (1992) Contribution of the amygdala and nucleus accumbens to ventral pallidal responses to dopamine agonists. Synapse 10: 110–119

    PubMed  CAS  Google Scholar 

  74. Momiyama T, Sim JA (1996) Modulation of inhibitory transmission by dopamine in rat basal forebrain nuclei: activation of presynaptic D1-like dopaminergic receptors. J Neurosci 16: 7505–7512

    PubMed  CAS  Google Scholar 

  75. Momiyama T, Sim JA, Brown DA (1996) Dopamine D1-like receptor-mediated presynaptic inhibition of excitatory transmission onto rat magnocellular basal forebrain neurones. J Physiol 495 (Pt 1): 97–106

    PubMed  CAS  Google Scholar 

  76. Johnson PI, Napier TC (1997) GABA-and glutamate-evoked responses in the rat ventral pallidum are modulated by dopamine. Eur J Neurosci 9: 1397–1406

    PubMed  CAS  Google Scholar 

  77. Nelson CL, Sarter M, Bruno JP (2000) Repeated pretreatment with amphetamine sensitizes increases in cortical acetylcholine release. Psychopharmacol 151: 406–415

    CAS  Google Scholar 

  78. Day JC, Tham CS, Fibiger HC (1994) Dopamine depletion attenuates amphetamine-induced increases of cortical acetylcholine release. Eur J Pharmacol 263: 285–292

    PubMed  CAS  Google Scholar 

  79. Arnold HM, Fadel J, Sarter M, Bruno JP (2001) Amphetamine-stimulated cortical acetylcholine release: role of the basal forebrain. Brain Res 894: 74–87

    PubMed  CAS  Google Scholar 

  80. Roberts AC, De Salvia MA, Wilkinson LS, Collins P, Muir JL, Everitt BJ, Robbins TW (1994) 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine. J Neurosci 14: 2531–2544

    PubMed  CAS  Google Scholar 

  81. Passetti F, Dalley JW, Robbins TW (2003) Double dissociation of serotonergic and dopaminergic mechanisms on attentional performance using a rodent five-choice reaction time task. Psychopharmacol 165: 136–145

    CAS  Google Scholar 

  82. Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW (2000) Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci 20: 1208–1215

    PubMed  CAS  Google Scholar 

  83. Chudasama Y, Robbins TW (2004) Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacol 29: 1628–1636

    CAS  Google Scholar 

  84. Zahrt J, Taylor JR, Mathew RG, Arnsten AF (1997) Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 17: 8528–8535

    PubMed  CAS  Google Scholar 

  85. Goldman-Rakic PS, Muly III EC, Williams GV (2000) D(1) receptors in prefrontal cells and circuits. Brain Res Rev 31: 295–301

    PubMed  CAS  Google Scholar 

  86. Ragozzino M (2000) The contribution of cholinergic and dopaminergic afferents in the rat prefrontal cortex to learning, memory, and attention. Psychobiology 28: 238–247.

    CAS  Google Scholar 

  87. Broersen LM, Heinsbroek RP, de Bruin JP, Olivier B (1996) Effects of local application of dopaminergic drugs into the medial prefrontal cortex of rats on latent inhibition. Biol Psychiatry 40: 1083–1090

    PubMed  CAS  Google Scholar 

  88. Broersen LM, Heinsbroek RP, de Bruin JP, Uylings HB, Olivier B (1995) The role of the medial prefrontal cortex of rats in short-term memory functioning: further support for involvement of cholinergic, rather than dopaminergic mechanisms. Brain Res 674: 221–229

    PubMed  CAS  Google Scholar 

  89. Izaki Y, Hori K, Nomura M (1998) Dopamine and acetylcholine elevation on lever-press acquisition in rat prefrontal cortex. Neurosci Lett 258: 33–36

    PubMed  CAS  Google Scholar 

  90. Laplante F, Srivastava LK, Quirion R (2004) Alterations in dopaminergic modulation of prefrontal cortical acetylcholine release in post-pubertal rats with neonatal ventral hippocampal lesions. J Neurochem 89: 314–323

    PubMed  CAS  Google Scholar 

  91. Sarter M, Parikh V (2005) Choline transporters, cholinergic transmission and cognition. Nature Rev Neurosci 6: 48–56

    CAS  Google Scholar 

  92. Apparsundaram S, Martinez V, Parikh V, Kozak R, Sarter M (2005) Increased capacity and density of choline transporters situated in synaptic membranes of the right medial prefrontal cortex of attentional task-performing rats. J Neurosci 15: 3851–3856

    Google Scholar 

  93. Ferguson SM, Blakely RD (2004) The choline transporter resurfaces: new roles for synaptic vesicles? Mol Intervent 4: 22–37

    CAS  Google Scholar 

  94. Ferguson SM, Savchenko V, Apparsundaram S, Zwick M, Wright J, Heilman CJ, Yi H, Levey AI, Blakely RD (2003) Vesicular localization and activity-dependent trafficking of presynaptic choline transporters. J Neurosci 23: 9697–9709

    PubMed  CAS  Google Scholar 

  95. Gates J, Jr., Ferguson SM, Blakely RD, Apparsundaram S (2004) Regulation of choline transporter surface expression and phosphorylation by protein kinase C and protein phosphatase 1/2A. J Pharmacol Exp Ther 310: 536–545

    PubMed  CAS  Google Scholar 

  96. Guermonprez L, O’Regan S, Meunier FM, Morot-Gaudry-Talarmain Y (2002) The neuronal choline transporter CHT1 is regulated by immunosuppressor-sensitive pathways. J Neurochem 82: 874–884

    PubMed  CAS  Google Scholar 

  97. Xie J, Guo Q (2004) Par-4 inhibits choline uptake by interacting with CHT1 and reducing its incorporation on the plasma membrane. J Biol Chem 279: 28266–28275

    PubMed  CAS  Google Scholar 

  98. Parikh V, Pomerleau F, Huettl P, Gerhardt GA, Sarter M, Bruno JP (2004) Rapid assessment of in vivo cholinergic transmission by amperometric detection of changes in extracellular choline levels. Eur J Neurosci 20: 1545–1554

    PubMed  Google Scholar 

  99. Zhuang X, Oosting RS, Jones SR, Gainetdinov RR, Miller GW, Caron MG, Hen R (2001) Hyperactivity and impaired response habituation in hyperdopaminergic mice. Proc Natl Acad Sci USA 98: 1982–1987

    PubMed  CAS  Google Scholar 

  100. Pecina S, Cagniard B, Berridge KC, Aldridge JW, Zhuang X (2003) Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. J Neurosci 23: 9395–9402

    PubMed  CAS  Google Scholar 

  101. Berridge KC, Aldridge JW, Houchard KR, Zhuang X (2005) Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette’s. BMC Biol 3: 4

    PubMed  Google Scholar 

  102. Westerink BH, de Boer P, Damsma G (1990) Dopamine-acetylcholine interaction in the striatum studied by microdialysis in the awake rat: some methodological aspects. J Neurosci Methods 34: 117–124

    PubMed  CAS  Google Scholar 

  103. Steiner H, Kitai ST (2000) Regulation of rat cortex function by D1 dopamine receptors in the striatum. J Neurosci 20: 5449–5460

    PubMed  CAS  Google Scholar 

  104. Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G (2000) Acetylcholine-mediated modulation of striatal function. Trends Neurosci 23: 120–126

    PubMed  CAS  Google Scholar 

  105. Ward NM, Brown VJ (1996) Covert orienting of attention in the rat and the role of striatal dopamine. J Neurosci 16: 3082–3088

    PubMed  CAS  Google Scholar 

  106. Kitabatake Y, Hikida T, Watanabe D, Pastan I, Nakanishi S (2003) Impairment of reward-related learning by cholinergic cell ablation in the striatum. Proc Natl Acad Sci USA 100: 7965–7970

    PubMed  CAS  Google Scholar 

  107. Burmeister JJ, Palmer M, Gerhardt GA (2003) Ceramic-based multisite electrode array for rapid choline measures in brain tissue. Analytica Chimica Acta 481: 65–74

    CAS  Google Scholar 

  108. Lockman PR, Allen DD (2002) The transport of choline. Drug Dev Ind Pharm 28: 749–771

    PubMed  CAS  Google Scholar 

  109. Acquas E, Di Chiara G (2001) Role of dopamine D1 receptors in the control of striatal acetylcholine release by endogenous dopamine. Neurol Sci 22: 41–42

    PubMed  CAS  Google Scholar 

  110. Acquas E, Di Chiara G (1999) Local application of SCH 39166 reversibly and dose-dependently decreases acetylcholine release in the rat striatum. Eur J Pharmacol 383: 275–279

    PubMed  CAS  Google Scholar 

  111. Johnson BJ, Bruno JP (1995) Dopaminergic modulation of striatal acetylcholine release in rats depleted of dopamine as neonates. Neuropharmacology 34: 191–203

    PubMed  CAS  Google Scholar 

  112. DeBoer P, Heeringa MJ, Abercrombie ED (1996) Spontaneous release of acetylcholine in striatum is preferentially regulated by inhibitory dopamine D2 receptors. Eur J Pharmacol 317: 257–262

    PubMed  CAS  Google Scholar 

  113. Maurice N, Mercer J, Chan CS, Hernandez-Lopez S, Held J, Tkatch T, Surmeier DJ (2004) D2 dopamine receptor-mediated modulation of voltage-dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons. J Neurosci 24: 10289–10301

    PubMed  CAS  Google Scholar 

  114. Bickerdike MJ, Abercrombie ED (1997) Striatal acetylcholine release correlates with behavioral sensitization in rats withdrawn from chronic amphetamine. J Pharmacol Exp Ther 282: 818–826

    PubMed  CAS  Google Scholar 

  115. Steinberg R, Souilhac J, Rodier D, Alonso R, Emonds-Alt X, Le Fur G, Soubrie P (1998) Facilitation of striatal acetylcholine release by dopamine D1 receptor stimulation: involvement of enhanced nitric oxide production via neurokinin-2 receptor activation. Neuroscience 84: 511–518

    PubMed  CAS  Google Scholar 

  116. Mandel RJ, Leanza G, Nilsson OG, Rosengren E (1994) Amphetamine induces excess release of striatal acetylcholine in vivo that is independent of nigrostriatal dopamine. Brain Res 653: 57–65

    PubMed  CAS  Google Scholar 

  117. Sarter M, Bruno JP (1999) Abnormal regulation of corticopetal cholinergic neurons and impaired information processing in neuropsychiatric disorders. Trends Neurosci 22: 67–74

    PubMed  CAS  Google Scholar 

  118. Goldman-Rakic PS, Castner SA, Svensson TH, Siever LJ, Williams GV (2004) Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacol 174: 3–16

    CAS  Google Scholar 

  119. Stip E, Chouinard S, Boulay LJ (2005) On the trail of a cognitive enhancer for the treatment of schizophrenia. Prog Neuropsychopharmacol Biol Psychiat 29: 219–232

    CAS  Google Scholar 

  120. Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96: 103–114

    PubMed  CAS  Google Scholar 

  121. Robinson TE, Berridge KC (2003) Addiction. Ann Rev Psychol 54: 25–53

    Google Scholar 

  122. Robinson TE, Berridge KC (2000) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction 95Suppl 2: S91–117

    PubMed  Google Scholar 

  123. Everitt BJ, Dickinson A, Robbins TW (2001) The neuropsychological basis of addictive behaviour. Brain Res Rev 36: 129–138

    PubMed  CAS  Google Scholar 

  124. Rogers RD, Everitt BJ, Baldacchino A, Blackshaw AJ, Swainson R, Wynne K, Baker NB, Hunter J, Carthy T, Booker E et al. (1999) Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacol 20: 322–339

    CAS  Google Scholar 

  125. Smith JE, Co C, Yin X, Sizemore GM, Liguori A, Johnson III WE, Martin TJ (2004) Involvement of cholinergic neuronal systems in intravenous cocaine self-administration. Neurosci Biobehav Rev 27: 841–850

    PubMed  CAS  Google Scholar 

  126. Smith JE, Vaughn TC, Co C (2004) Acetylcholine turnover rates in rat brain regions during cocaine self-administration. J Neurochem 88: 502–512

    PubMed  CAS  Google Scholar 

  127. Martinez V, Parikh V, Sarter M (2005) Sensitized attentional performance and Fosimmunoreactive cholinergic neurons in the basal forebrain of amphetamine-pretreated rats. Biol Psychiat 57: 1138–1146.

    PubMed  CAS  Google Scholar 

  128. Bednar I, Friberg L, Nordberg A (2004) Modulation of dopamine release by the nicotinic agonist epibatidine in the frontal cortex and the nucleus accumbens of naive and chronic nicotine treated rats. Neurochem Int 45: 1049–1055

    PubMed  CAS  Google Scholar 

  129. Cao YJ, Surowy CS, Puttfarcken PS (2005) Different nicotinic acetylcholine receptor subtypes mediating striatal and prefrontal cortical [3H]dopamine release. Neuropharmacol 48: 72–79

    CAS  Google Scholar 

  130. Zhang L, Zhou FM, Dani JA (2004) Cholinergic drugs for Alzheimer’s disease enhance in vitro dopamine release. Mol Pharmacol 66: 538–544

    PubMed  CAS  Google Scholar 

  131. Levin ED, M.W. D, Butcher LL (1992) Neurotransmitter interactions and cognitive function. In: Levin ED, Decker MW, Butcher LL (eds): Neurotransmitter interactions and cognitive function. Birkhäuser, Boston, 355–357

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Sarter, M., Bruno, J.P., Parikh, V., Martinez, V., Kozak, R., Richards, J.B. (2006). Forebrain dopaminergic-cholinergic interactions, attentional effort, psychostimulant addiction and schizophrenia. In: Levin, E.D. (eds) Neurotransmitter Interactions and Cognitive Function. Experientia Supplementum, vol 98. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7772-4_4

Download citation

Publish with us

Policies and ethics