Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

  • 550 Accesses

Abstract

The ability of immune cells to recognise foreign pathogens, while simultaneously maintaining tolerance towards proteins produced by the body’s own cells, forms the basis of mammalian immunity. At the heart of the immune system are the lymphocytes, which orchestrate the adaptive immune response through clonal expansion upon recognition of a specific antigen. The plasticity of the immune system allows exquisite control of the body’s defences. However, the adaptive immune system can also be directed towards host proteins (‘self antigens’). The reasons for this failure in immunity are varied, and include a genetic basis or evasion of the host immune response by viruses. Nevertheless, the consequences — autoimmune diseases such as rheumatoid arthritis (RA) — are frequently associated with inflammation, immune cell dysfunction and changes in the vasculature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Walsh DA, Pearson CI (2001) Angiogenesis in the pathogenesis of inflammatory joint and lung diseases. Arthritis Res 3: 147–153

    Article  PubMed  CAS  Google Scholar 

  2. Bainbridge J, Sivakumar B, Paleolog E (2006) Angiogenesis as a therapeutic target in arthritis: Lessons from oncology. Curr Pharm Des 12: 2631–2644

    Article  PubMed  CAS  Google Scholar 

  3. Sivakumar B, Harry LE, Paleolog EM (2004) Modulating angiogenesis: More vs less. JAMA 292: 972–977

    Article  PubMed  CAS  Google Scholar 

  4. Winchester R (1994) The molecular basis of susceptibility to rheumatoid arthritis. Adv Immunol 56: 389–466

    Article  PubMed  CAS  Google Scholar 

  5. Cope AP, Londei M, Chu NR, Cohen SB, Elliott MJ, Brennan FM, Maini RN, Feldmann M (1994) Chronic exposure to tumor necrosis factor (TNF) in vitro impairs the activation of T cells through the T cell receptor/CD3 complex; reversal in vivo by anti-TNF antibodies in patients with rheumatoid arthritis. J Clin Invest 94: 749–760

    Article  PubMed  CAS  Google Scholar 

  6. Isomaki P, Panesar M, Annenkov A, Clark JM, Foxwell BM, Chernajovsky Y, Cope AP (2001) Prolonged exposure of T cells to TNF down-regulates TCR zeta and expression of the TCR/CD3 complex at the cell surface. J Immunol 166: 5495–5507

    PubMed  CAS  Google Scholar 

  7. Clark JM, Annenkov AE, Panesar M, Isomaki P, Chernajovsky Y, Cope AP (2004) T cell receptor zeta reconstitution fails to restore responses of T cells rendered hyporesponsive by tumor necrosis factor alpha. Proc Natl Acad Sci USA 101: 1696–1701

    Article  PubMed  CAS  Google Scholar 

  8. Cope AP (2004) Altered signalling thresholds in T lymphocytes cause autoimmune arthritis. Arthritis Res Ther 6: 112–116

    Article  PubMed  CAS  Google Scholar 

  9. Cope AP (2002) Studies of T-cell activation in chronic inflammation. Arthritis Res 4 Suppl 3: S197–211

    Article  PubMed  Google Scholar 

  10. Weyand CM, Goronzy JJ, Takemura S, Kurtin PJ (2000) Cell-cell interactions in synovitis. Interactions between T cells and B cells in rheumatoid arthritis. Arthritis Res 2: 457–463

    Article  PubMed  CAS  Google Scholar 

  11. Weyand CM, Goronzy JJ (2003) Ectopic germinal center formation in rheumatoid synovitis. Ann NY Acad Sci 987: 140–149

    Article  PubMed  CAS  Google Scholar 

  12. Wagner UG, Kurtin PJ, Wahner A, Brackertz M, Berry DJ, Goronzy JJ, Weyand CM (1998) The role of CD8+ CD40L+ T cells in the formation of germinal centers in rheumatoid synovitis. J Immunol 161: 6390–6397

    PubMed  CAS  Google Scholar 

  13. Takemura S, Braun A, Crowson C, Kurtin PJ, Cofield RH, O—Fallon WM, Goronzy JJ, Weyand CM (2001) Lymphoid neogenesis in rheumatoid synovitis. J Immunol 167: 1072–1080

    PubMed  CAS  Google Scholar 

  14. Manzo A, Paoletti S, Carulli M, Blades MC, Barone F, Yanni G, Fitzgerald O, Bresnihan B, Caporali R, Montecucco C et al (2005) Systematic microanatomical analysis of CXCL13 and CCL21 in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur J Immunol 35: 1347–1359

    Article  PubMed  CAS  Google Scholar 

  15. Weyand CM, Kang YM, Kurtin PJ, Goronzy JJ (2003) The power of the third dimension: Tissue architecture and autoimmunity in rheumatoid arthritis. Curr Opin Rheumatol 15: 259–266

    Article  PubMed  CAS  Google Scholar 

  16. Sidky YA, Auerbach R (1975) Lymphocyte-induced angiogenesis: A quantitative and sensitive assay of the graft-vs.-host reaction. J Exp Med 141: 1084–1100

    Article  PubMed  CAS  Google Scholar 

  17. Blake DR, Merry P, Unsworth J, Kidd BL, Outhwaite JM, Ballard R Morris CJ, Gray L, Lunec J (1989) Hypoxic-reperfusion injury in the inflamed human joint. Lancet I: 289–293

    Article  Google Scholar 

  18. Merry P, Grootveld M, Blake DR (1989) Hypoxic-reperfusion injury in inflamed joints. Lancet I: 1023

    Article  Google Scholar 

  19. Naughton DP (2003) Hypoxia-induced upregulation of the glycolytic enzyme glucose-6-phosphate isomerase perpetuates rheumatoid arthritis. Med Hypotheses 60: 332–334

    Article  PubMed  CAS  Google Scholar 

  20. Lund-Olesen K (1970) Oxygen tension in synovial fluids. Arthritis Rheum 13: 769–776

    Article  PubMed  CAS  Google Scholar 

  21. Sivakumar B, Akhavani M, Kang N, Taylor P, Paleolog E (2006) Hypoxia-driven angiogenesis is a key feature of tendon disease in rheumatoid arthritis. Rheumatology (Oxford) 45 (Suppl 1): i39

    Google Scholar 

  22. Etherington PJ, Winlove P, Taylor P, Paleolog E, Miotla J (2002) VEGF release is associated with reduced oxygen tensions in experimental inflammatory arthritis. Clin Exp Rheumatol 20: 799–805

    PubMed  CAS  Google Scholar 

  23. Stevens CR, Blake DR, Merry P, Revell PA, Levick JR (1991) A comparative study by morphometry of the microvasculature in normal and rheumatoid synovium. Arthritis Rheum 34: 1508–1513

    PubMed  CAS  Google Scholar 

  24. Naughton D, Whelan M, Smith EC, Williams R, Blake DR, Grootveld M (1993) An investigation of the abnormal metabolic status of synovial fluid from patients with rheumatoid arthritis by high field proton nuclear magnetic resonance spectroscopy. FEBS Lett 317: 135–138

    Article  PubMed  CAS  Google Scholar 

  25. Caldwell CC, Kojima H, Lukashev D, Armstrong J, Farber M, Apasov SG, Sitkovsky MV (2001) Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. J Immunol 167: 6140–6149

    PubMed  CAS  Google Scholar 

  26. Braun RD, Lanzen JL, Snyder SA, Dewhirst MW (2001) Comparison of tumor and normal tissue oxygen tension measurements using OxyLife or microelectrodes in rodents. Am J Physiol Heart Circ Physiol 280: H2533–2544

    PubMed  CAS  Google Scholar 

  27. Naldini A, Carraro F, Silvestri S, Bocci V (1997) Hypoxia affects cytokine production and proliferative responses by human peripheral mononuclear cells. J Cell Physiol 173: 335–342

    Article  PubMed  CAS  Google Scholar 

  28. Naldini A, Carraro F (1999) Hypoxia modulates cyclin and cytokine expression and inhibits peripheral mononuclear cell proliferation. J Cell Physiol 181: 448–454

    Article  PubMed  CAS  Google Scholar 

  29. Krieger JA, Landsiedel JC, Lawrence DA (1996) Differential in vitro effects of physiological and atmospheric oxygen tension on normal human peripheral blood mononuclear cell proliferation, cytokine and immunoglobulin production. Int J Immunopharmacol 18: 545–552

    Article  PubMed  CAS  Google Scholar 

  30. Makino Y, Nakamura H, Ikeda E, Ohnuma K, Yamauchi K, Yabe Y, Poellinger L, Okada Y, Morimoto C, Tanaka H (2003) Hypoxia-inducible factor regulates survival of antigen receptor-driven T cells. J Immunol 171: 6534–6540

    PubMed  CAS  Google Scholar 

  31. Gaber T, Dziurla R, Tripmacher R, Burmester GR, Buttgereit F (2005) Hypoxia inducible factor (HIF) in rheumatology: Low O2! See what HIF can do! Ann Rheum Dis 64: 971–980

    Article  PubMed  CAS  Google Scholar 

  32. Mazure NM, Brahimi-Horn MC, Berta MA, Benizri E, Bilton RL, Dayan F, Ginouves A, Berra E, Pouyssegur J (2004) HIF-1: Master and commander of the hypoxic world. A pharmacological approach to its regulation by siRNAs. Biochem Pharmacol 68: 971–980

    Article  PubMed  CAS  Google Scholar 

  33. Brahimi-Horn C, Mazure N, Pouyssegur J (2005) Signalling via the hypoxia-inducible factor-1alpha requires multiple posttranslational modifications. Cell Signal 17: 1–9

    Article  PubMed  CAS  Google Scholar 

  34. Kallio PJ, Okamoto K, O—Brien S, Carrero P, Makino Y, Tanaka H, Poellinger L (1998) Signal transduction in hypoxic cells: Inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxia-inducible factor-1alpha. EMBO J 17: 6573–6586

    Article  PubMed  CAS  Google Scholar 

  35. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O—Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A et al (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43–54

    Article  PubMed  CAS  Google Scholar 

  36. Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 20: 5197–5206

    Article  PubMed  CAS  Google Scholar 

  37. Masson N, Ratcliffe PJ (2003) HIF prolyl and asparaginyl hydroxylases in the biological response to intra cellular O2 levels. J Cell Sci 116: 3041–3049

    Article  PubMed  CAS  Google Scholar 

  38. Lando D, Gorman JJ, Whitelaw ML, Peet DJ (2003) Oxygen-dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation. Eur J Biochem 270: 781–790

    Article  PubMed  CAS  Google Scholar 

  39. Marxsen JH, Stengel P, Doege K, Heikkinen P, Jokilehto T Wagner T, Jelkmann W, Jaakkola P, Metzen E (2004) Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-alpha-prolyl-4-hydroxylases. Biochem J 381: 761–767

    Article  PubMed  CAS  Google Scholar 

  40. Appelhoff RJ, Tian YM, Raval RR, Turley H, Harris AL, Pugh CW, Ratcliffe PJ, Gleadle JM (2004) Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. J Biol Chem 279: 38458–38465

    Article  PubMed  CAS  Google Scholar 

  41. Aprelikova O, Chandramouli GV, Wood M, Vasselli JR, Riss J, Maranchie JK, Linehan WM, Barrett JC (2004) Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors. J Cell Biochem 92: 491–501

    Article  PubMed  CAS  Google Scholar 

  42. Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J (2003) HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1 alpha in normoxia. EMBO J 22: 4082–4090

    Article  PubMed  CAS  Google Scholar 

  43. Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–732

    Article  PubMed  CAS  Google Scholar 

  44. Hirota K, Semenza GL (2005) Regulation of hypoxia-inducible factor 1 by prolyl and asparaginyl hydroxylases. Biochem Biophys Res Commun 338: 610–616

    Article  PubMed  CAS  Google Scholar 

  45. Hitchon C, Wong K, Ma G, Reed J, Lyttle D, El-Gabalawy H (2002) Hypoxia-induced production of stromal cell-derived factor 1 (CXCL12) and vascular endothelial growth factor by synovial fibroblasts. Arthritis Rheum 46: 2587–2597

    Article  PubMed  CAS  Google Scholar 

  46. Hollander AP, Corke KP, Freemont AJ, Lewis CE (2001) Expression of hypoxia-inducible factor 1alpha by macrophages in the rheumatoid synovium: Implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum 44: 1540–1544

    Article  PubMed  CAS  Google Scholar 

  47. Giatromanolaki A, Sivridis E, Maltezos E, Athanassou N, Papazoglou D, Gatter KC et al (2003) Upregulated hypoxia inducible factor-1 alpha and-2alpha pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 5: R193–201

    Article  PubMed  CAS  Google Scholar 

  48. Peters CL, Morris CJ, Mapp PI, Blake DR, Lewis CE, Winrow VR (2004) The transcription factors hypoxia-inducible factor 1 alpha and Ets-1 colocalize in the hypoxic synovium of inflamed joints in adjuvant-induced arthritis. Arthritis Rheum 50: 291–296

    Article  PubMed  CAS  Google Scholar 

  49. Kojima H, Gu H, Nomura S, Caldwell CC, Kobata T, Carmeliet P, Semenza GL, Sitkovsky MV (2002) Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible factor 1 alpha-deficient chimeric mice. Proc Natl Acad Sci USA 99: 2170–2174

    Article  PubMed  CAS  Google Scholar 

  50. Nakamura H, Makino Y, Okamoto K, Poellinger L, Ohnuma K, Morimoto C, Tanaka H (2005) TCR engagement increases hypoxia-inducible factor-1 alpha protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells. J Immunol 174: 7592–7599

    PubMed  CAS  Google Scholar 

  51. Neumann AK, Yang J, Biju MP, Joseph SK, Johnson RS, Haase VH, Freedman BD, Turka LA (2005) Hypoxia inducible factor 1 alpha regulates T cell receptor signal transduction. Proc Natl Acad Sci USA 102: 17071–17076

    Article  PubMed  CAS  Google Scholar 

  52. Auerbach R, Sidky YA (1979) Nature of the stimulus leading to lymphocyte-induced angiogenesis. J Immunol 123: 751–754

    PubMed  CAS  Google Scholar 

  53. Moulton KS, Melder RJ, Dharnidharka VR, Hardin-Young J, Jain RK, Briscoe DM (1999) Angiogenesis in the huPBL-SCID model of human transplant rejection. Transplantation 67: 1626–1631

    Article  PubMed  CAS  Google Scholar 

  54. Freeman MR, Schneck FX, Gagnon ML, Corless C, Soker S, Niknejad K, Peoples GE, Klagsbrun M (1995) Peripheral blood T lymphocytes and lymphocytes infiltrating human cancers express vascular endothelial growth factor: A potential role for T cells in angiogenesis. Cancer Res 55: 4140–4145

    PubMed  CAS  Google Scholar 

  55. Paleolog EM, Young S, Stark AC, McCloskey RV, Feldmann M, Maini RN (1998) Modulation of angiogenic vascular endothelial growth factor by tumor necrosis factor alpha and interleukin-1 in rheumatoid arthritis. Arthritis. Rheum 41: 1258–1265

    Article  PubMed  CAS  Google Scholar 

  56. Jain A, Kiriakidis S, Brennan F, Sandison A, Paleolog E, Nanchahal J (2006) Targeting rheumatoid tenosynovial angiogenesis with cytokine inhibitors. Clin Orthop Relat Res 446: 268–277

    Article  PubMed  Google Scholar 

  57. Biju MP, Neumann AK, Bensinger SJ, Johnson RS, Turka LA, Haase VH (2004) Vhlh gene deletion induces Hif-1-mediated cell death in thymocytes. Mol Cell Biol 24: 9038–9047

    Article  PubMed  CAS  Google Scholar 

  58. Mor F, Quintana FJ, Cohen IR (2004) Angiogenesis-inflammation cross-talk: Vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J Immunol 172: 4618–4623

    PubMed  CAS  Google Scholar 

  59. Kiriakidis S, Andreakos E, Monaco C, Foxwell B, Feldmann M, Paleolog E (2003) VEGF expression in human macrophages is NF-kappaB-dependent: Studies using adenoviruses expressing the endogenous NF-kappaB inhibitor IkappaBalpha and a kinase-defective form of the IkappaB kinase 2. J Cell Sci 116: 665–674

    Article  PubMed  CAS  Google Scholar 

  60. Melter M, Reinders ME, Sho M, Pal S, Geehan C, Denton MD, Mukhopadhyay, D, Briscoe DM (2000) Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood 96: 3801–3808

    PubMed  CAS  Google Scholar 

  61. Cho CS, Cho ML, Min SY, Kim WU, Min DJ, Lee SS, Park SH, Choe J, Kim HY (2000) CD40 engagement on synovial fibroblast up-regulates production of vascular endothelial growth factor. J Immunol 164: 5055–5061

    PubMed  CAS  Google Scholar 

  62. Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT (2002) Regulation of hypoxia-inducible factor 1 alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22: 7004–7014

    Article  PubMed  CAS  Google Scholar 

  63. Bernardi R, Guernah I, Jin D, Grisendi S, Alimonti A, Teruya-Feldstein J, Cordon-Cardo C, Simon MC, Rafii S, Pandolfi PP (2006) PML inhibits HIF-1alpha translation and neoangiogenesis through repression of mTOR. Nature 442: 779–785

    Article  PubMed  CAS  Google Scholar 

  64. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10: 858–864

    Article  PubMed  CAS  Google Scholar 

  65. Nanki T, Hayashida K, El-Gabalawy HS, Suson S, Shi K, Girschick HJ, Yavuz S, Lipsky PE (2000) Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J Immunol 165: 6590–6598

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Paleolog, E., Akhavani, M.A. (2008). The lymphocyte in inflammatory angiogenesis. In: Seed, M.P., Walsh, D.A. (eds) Angiogenesis in Inflammation: Mechanisms and Clinical Correlates. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-7650-5_4

Download citation

Publish with us

Policies and ethics