Skip to main content

Abstract

To modern scientists, the origin of life seems one of the most difficult of all problems. This was not always so. From classic Greek times until the middle of the 19th century it was generally accepted that living organisms could originate spontaneously, without parents, from nonliving material. Thus, for centuries it was believed that insects, frogs, worms, etc. were generated spontaneously in mud and decaying matter. This notion was experimentally disproved in 1668 by Redi, who showed that larvae did not develop in meat if adult insects were prevented from laying their eggs on it; but it was revived again following the discovery of microorganisms by Leeuwenhoek in 1675. Since bacteria, yeasts and protozoa were much smaller and apparently simpler than any previously known living things, Redi’s disproof did not seem to apply to them, and the possibility of their spontaneous origin became a matter of controversy for nearly 200 years. We know today that these organisms, despite their small size, are enormously complex—as complex as the cells of higher organisms—and the possibility that they could originate spontaneously from non-living material is as remote as it is for any other cells. In a series of brilliant experiments, Pasteur (82) in 1861 finally overcame the technical difficulties that had prevented solution of the problem and demonstrated, by logically the same argument that Redi had used, that microorganisms arise only from pre-existing microorganisms. The genetic continuity of living organisms was thus established for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, P. H.: Amino Acids Formed in “Primitive Atmospheres”. Science (Washington) 124, 935 (1956).

    Google Scholar 

  2. Abelson, P. H.: Paleobiochemistry and Organic Geochemistry. Fortschr. Chem. organ. Naturstoffe 17. 379 (1959).

    CAS  Google Scholar 

  3. Akabori, S.: On the Origin of the Fore-Protein. In (78), p. 189.

    Google Scholar 

  4. Alexander, H. E. and G. Leidy: Determination of Inherited Traits of H. influenzas by Desoxyribonucleic Acid Fractions Isolated from Type-Specific Cells. J. exp. Medicine 93, 345 (1951).

    CAS  Google Scholar 

  5. Allison, A. C.: Protection Afforded by Sickle-Cell Trait Against Subtertian Malarial Infection. Brit. Med. J. 1954, 290

    Google Scholar 

  6. Anfinsen, C. B.: The Molecular Basis of Evolution. New York: John Wiley and Sons, Inc. 1959.

    Google Scholar 

  7. Arrhenius, S.: Worlds in the Making. New York: Harper. 1908.

    Google Scholar 

  8. Avery, O. T., C. M. Macleod and M. Mccarty: Studies on the Chemical Nature of the Substance Inducing Transformation of Pneumococcal Types. J. exp. Medicine 79, 137 (1944).

    CAS  Google Scholar 

  9. Bahadur, K.: Photosynthesis of Amino Acids from Paraformaldehyde and Potassium Nitrate. Nature (London) 173, 1141 (1954).

    CAS  Google Scholar 

  10. Bahaadur, K.: The Reactions Involved in the Formation of Compounds Preliminary to the Synthesis of Protoplasm and Other Materials of Biological Importance. In (78), p. 140.

    Google Scholar 

  11. Bahadur, K., S. Ranganayaki and L. Santamaria: Photosynthesis of Amino Acids from Paraformaldehyde Involving the Fixation of Nitrogen in the Presence of Colloidal Molybdenum Oxides, as Catalyst. Nature (London) 182, 1668 (1958).

    CAS  Google Scholar 

  12. Barghoorn, E. S.: Origin of Life. Geol. Soc. Amer., Memoirs No. 67, 2, 75 (1957)

    Google Scholar 

  13. Beadle, G. W.: Biochemical Genetics. Chem. Rev. 37, 15 (1945).

    CAS  Google Scholar 

  14. Beadle, G. W.: Evolution in Microorganisms, with Special Reference to the Fungi. Accad. naz. Lincei, Roma 47, 301 (1960).

    Google Scholar 

  15. Berg, P.: Specificity in Protein Synthesis. Annu. Rev. Biochem. 30 293 (1961).

    CAS  Google Scholar 

  16. Berger, R.: The Proton Irradiation of Methane, Ammonia, and Water at 77° K. Proc. Nat. Acad. Sci. (USA) 47, 1434 (1961).

    CAS  Google Scholar 

  17. Bernal, J. D.: The Physical Basis of Life. London: Routledge and Kegan Paul. 1951.

    Google Scholar 

  18. Bonner, J.: Structure and Origin of the Ribosomes. In: R. J. C. Harris, Protein Biosynthesis, p. 323. New York: Academic Press. 1961.

    Google Scholar 

  19. Bovarnick, M. and H. T. Clarke: Racemization of Tripeptides and Hydantoins. J. Amer. Chem. Soc. 60 2426 (1938).

    CAS  Google Scholar 

  20. Brenner, S., F. Jacob and M. Meselson: An Unstable Intermediate Carrying Information from Genes to Ribosomes for Protein Synthesis. Nature (London) 190, 76 (1961).

    Google Scholar 

  21. Brown, H.: The Carbon Cycle in Nature. Fortschr. Chem. organ. Naturstoffe 14, 317 (1957)

    CAS  Google Scholar 

  22. Cavalieri, L. F., B. H. Rosenberg and J. F. Deutsch: The Subunit of Deoxyribonucleic Acid. Biochem. Biophys. Res. Comm. 1, 124 (1959).

    CAS  Google Scholar 

  23. Crawford, I. P. and C. Yanofsky: On the Separation of the Tryptophan Synthetase of Escherichia coli into Two Protein Components. Proc. Nat. Acad. Sci. (USA) 44, 1161 (1958).

    CAS  Google Scholar 

  24. Crow, J. F.: Darwin’s Influence on the Study of Genetics and the Origin of Life. In: M. R. Wheeler, Biological Contributions, p. 49. Austin: Univ. Texas. 1959.

    Google Scholar 

  25. Davidson, J. N.: The Biochemistry of the Nucleic Acids. London: Methuen and Co., Ltd. 3rd ed. 1957.

    Google Scholar 

  26. Demerec, M. and P. E. Hartman: Complex Loci in Microorganisms. Annu. Rev. Microbiol. 13, 377 (1959)

    Google Scholar 

  27. Ellenbogen, E.: Photochemical Synthesis of Amino Acids. Abstr. Amer. Chem. Soc. Meeting, Chicago (1955), p. 47 C; and personal communications.

    Google Scholar 

  28. Fowler, W. A., J. L. Greenstein and F. Hoyle: Deuteronomy: Synthesis of Deuterons and the Light Nuclei During the Early History of the Solar System. Amer. J. Physics 29, 393 (1961).

    CAS  Google Scholar 

  29. Fox, S. W.: How Did Life Begin? Science (Washington) 132, 200 (1960).

    CAS  Google Scholar 

  30. Fox, S. W. and K. Harada: Synthesis of Uracil under Conditions of a Thermal Model of Prebiological Chemistry. Science (Washington) 133, 1923 (1961).

    CAS  Google Scholar 

  31. Fraenkel-Conrat, H.: The Role of the Nucleic Acid in the Reconstitution of Active Tobacco Mosaic Virus. J. Amer. Chem. Soc. 78, 882 (1956).

    CAS  Google Scholar 

  32. Fraenkel-Conrat, H. and B. Singer: Virus Reconstitution. H. Combination of Protein and Nucleic Acid from Different Strains. Biochim. Biophys. Acta 24, 540 (1957)

    CAS  Google Scholar 

  33. Freese, E.: On the Molecular Explanation of Spontaneous and Induced Mutations. Brookhaven Sympos. Biol. 12, 63 (1959).

    Google Scholar 

  34. Garrison, W. M., D. C. Morrison, J. G. Hamilton, A. A. Benson and M. Calvin: Reduction of Carbon Dioxide in Aqueous Solutions by Ionizing Radiation. Science (Washington) 114, 416 (1951).

    CAS  Google Scholar 

  35. Gierer, A. and G. Schramm: Infectivity of Ribonucleic Acid from Tobacco Mosaic Virus. Nature (London) 177, 702 (1956).

    CAS  Google Scholar 

  36. Glasel, J.: Stabilization of NH in Hydrocarbon Matrices and its Relation to Cometary Phenomena. Proc. Nat. Acad. Sci. (USA) 47, 174 (1961).

    CAS  Google Scholar 

  37. Gros, F., H. Hiatt, W. Gilbert, C. G. Kurland, R. W. Risebrough and J. D. Watson: Unstable Ribonucleic Acid Revealed by Pulse Labelling of Escherichia coli. Nature (London) 190, 581 (1961).

    Google Scholar 

  38. Groth, W. and H. V. Weyssenhoff: Photochemische Bildung von Aminosäuren aus Mischungen einfacher Gase. Naturwiss. 44, 510 (1957).

    CAS  Google Scholar 

  39. Groth, W. and H. V. Weyssenhoff: Photochemical Formation of Organic Compounds from Mixtures of Simple Gases. Planet. Space Science 2, 79 (1960); Ann. Physik 4, 70 (1959).

    Google Scholar 

  40. Gulick, A.: Phosphorus and the Origin of Life. Ann. N. Y. Acad. Sci. 69, 309 (1957); Amer. Scientist 43, 479 (1955).

    CAS  Google Scholar 

  41. Hardin, G.: Darwin and the Heterotroph Hypothesis. Sci. Monthly 70, 178 (1950).

    Google Scholar 

  42. Hershey, A. D. and M. Chase: Independent Functions of Viral Proteins and Nucleic Acid in Growth of Bacteriophage. J. Gen. Physiol. 36, 39 (1952).

    CAS  Google Scholar 

  43. Heyns, K., W. Walter and E. Meyer: Modelluntersuchungen zur Bildung organischer Verbindungen in Atmosphären einfacher Gase durch elektrische Entladungen. Naturwiss. 44, 385 (1957).

    CAS  Google Scholar 

  44. Hoagland, M. B.: The Relationship of Nucleic Acid and Protein Synthesis as Revealed by Studies in Cell Free Systems. In: E. Chargaff and J. N. Davidson, The Nucleic Acids, Vol. 3, P. 349. New York: Academic Press, Inc. 1960.

    Google Scholar 

  45. Holmes, A.: The Oldest Dated Minerals of the Rhodesian Shield. Nature (London) 173, 612 (1954)

    CAS  Google Scholar 

  46. Horowitz, N. H.: On the Evolution of Biochemical Syntheses. Proc. Nat. Acad. Sci. (USA) 31, 153 (1945)

    CAS  Google Scholar 

  47. Horowitz, N. H.: Biochemical Genetics of Neurospora. Adv. Genetics 3, 33 (1950).

    CAS  Google Scholar 

  48. Horowitz, N. H. and M. Fling: The Role of the Genes in the Synthesis of Enzymes. In: O. Gaebler, Enzymes: Units of Biological Structure and Function, p. 139. New York: Academic Press, Inc. 1956.

    Google Scholar 

  49. Horowitz, N. H., M. Fling, H. Macleod and N. Sueoka: A Genetic Study of Two New Structural Forms of Tyrosinase in Neurospora. Genetics 46, 1015 (1961).

    CAS  Google Scholar 

  50. Horowitz, N. H. and U. Leupold: Some Recent Studies Bearing on the One Gene-One Enzyme Hypothesis. Cold Spring Harbor Sympos. Quant. Biol. 16, 65 (1951).

    CAS  Google Scholar 

  51. Hotchkiss, R. D.: The Biological Role of the Deoxypentose Nucleic Acids. In: E. Chargaff and J. N. Davidson, The Nucleic Acids, Vol. 2, p. 435. New York: Academic Press, Inc. 1955.

    Google Scholar 

  52. Hotcukiss, R. D. and J. Marmite: Double Marker Transformations as Evidence of Linked Factors in Desoxyribonucleate Transforming Agents. Proc. Nat. Acad. Sci. (USA) 40, 55 (1954)

    Google Scholar 

  53. Hurwitz, J., A. Bresler and R. Diringer: The Enzymatic Incorporation of Ribonucleotides into Polyribonucleotides and the Effect of DNA. Biochem. Biophys. Res. Comm. 3, 15 (1960).

    CAS  Google Scholar 

  54. Ingram, V. M.: Abnormal Human Haemoglobins. I. The Comparison of Normal Human and Sickle-Cell Haemoglobins by “Fingerprinting”. Biochem. Biophys. Acta 28, 539 (1958).

    CAS  Google Scholar 

  55. Ingram, V. M.: Gene Evolution and the Haemoglobins. Nature (London) 189, 704 (1961).

    CAS  Google Scholar 

  56. Itano, H. A.: The Human Hemoglobins: Their Properties and Genetic Control. Adv. Protein Chem. 12, 215 (1957).

    CAS  Google Scholar 

  57. Itano, H. A. and E. Robinson: Genetic Control of the x-and ß-Chains of Hemoglobin. Federat. Proc. (Amer. Soc. exp. Biol.) 19, 193 (1960).

    Google Scholar 

  58. Kendrew, J. C., R. E. Dickerson, B. E. Strandberg, R. G. Hart, D. R. Davies, D. C. Philips and V. C. Shore: Structure of Myoglobin. Nature (London) 185, 422 (1960).

    CAS  Google Scholar 

  59. Klug, A. and D. L. D. Caspar: The Structure of Small Viruses. Adv. Virus Res. 7, 225 (1960).

    CAS  Google Scholar 

  60. Kornberg, A.: Biologic Synthesis of Deoxyribonucleic Acid. Science (Washington) 131, 1503 (1960).

    CAS  Google Scholar 

  61. Kozyrev, N. A.: Observation of a Volcanic Process on the Moon. Sky and Telescope (Harvard College Observatory) 18, 184 (1959)

    Google Scholar 

  62. Lederberg, J.: Exobiology: Approaches to Life Beyond the Earth. Science (Washington) 132, 393 (1960).

    CAS  Google Scholar 

  63. Lederberg, J. and D. B. Cowie: Moondust. Science (Washington) 127, 1473 (1958).

    CAS  Google Scholar 

  64. Lehman, I. R.: Enzymatic Synthesis of Desoxyribonucleic Acid. Ann. N. Y. Acad. Sci. 81, 745 (1959).

    CAS  Google Scholar 

  65. Lewis, E. B.: Pseudoallelism and Gene Evolution. Cold Spring Harbor Sympos. Quant. Biol. 16, 159 (1951).

    CAS  Google Scholar 

  66. Litman, R. M. et H. Ephrussi-Taylor: Inactivation et mutation des facteurs génétiques de l’acide désoxyribonucléique du Pneumocoque par l’ultraviolet et par l’acide nitreux. C. R. hebd. Séances Acad. Sci. 249, 838 (1959).

    CAS  Google Scholar 

  67. Lotka, A. J.: Elements of Physical Biology. Baltimore: Williams and Wilkins Co. 1925.

    Google Scholar 

  68. Macgregor, A. M.: A Precambrian Algal Limestone in Southern Rhodesia. Geol. Soc. South Africa, Trans. 43, 9 (1940).

    Google Scholar 

  69. Marmur, J. and R. D. Hotchkiss: Mannitol Metabolism, a Transferable Property of Pneumococcus. J. Biol. Chem. 214, 383 (1955)

    CAS  Google Scholar 

  70. Matthaei, J. H., O. W. Jones, R. G. Martin and M. W. Nirenberg: Characteristics and Composition of Coding Units. Proc. Nat. Acad. Sci. (USA) 48, 666 (1962).

    CAS  Google Scholar 

  71. Meselson, M. and F. W. Stahl: The Replication of DNA in Escherichia coli. Proc. Nat. Acad. Sci. (USA) 44, 671 (1958).

    CAS  Google Scholar 

  72. Miller, S. L.: A Production of Amino Acids Under Possible Primitive Earth Conditions. Science (Washington) 117, 528 (1953).

    CAS  Google Scholar 

  73. Miller, S. L.: The Mechanism of Synthesis of Amino Acids by Electric Discharges. Biochem. Biophys. Acta 23, 480 (1957)

    CAS  Google Scholar 

  74. Miller, S. L.: Production of Organic Compounds Under Possible Primitive Earth Conditions. J. Amer. Chem. Soc. 77, 2351 (1957).

    Google Scholar 

  75. Miller, S. L.: The Formation of Organic Compounds on the Primitive Earth. Ann. N. Y. Acad. Sci. 69, 260 (1957); also in (78), p. 123.

    Google Scholar 

  76. Miller, S. L. and H. C. Urey: Organic Compound Synthesis on the Primitive Earth. Science (Washington) 130, 245 (1959).

    CAS  Google Scholar 

  77. Muller, H. J.: Variation Due to Change in the Individual Gene. Amer. Naturalist 56, 32 (1922).

    Google Scholar 

  78. Muller, H. J.: The Gene as the Basis of Life. Proc. Intern. Congr. Plant Science, Ithaca 1, 897 (1929).

    Google Scholar 

  79. Mundry, K. W. und A. Gierer: Die Erzeugung von Mutanten des Tabakmosaikvirus durch chemische Behandlung der Nukleinsäure in vitro. Z. Vererbungslehre 89, 614 (1958).

    CAS  Google Scholar 

  80. Nagy, B., W. G. Meinschein and D. J. Hennessy: MaSS Spectroscopic Analysis of the Orgueil Meteorite: Evidence for Biogenic Hydrocarbons. Ann. N. Y. Acad. Sci. 93, 25 (1961).

    CAS  Google Scholar 

  81. Nirenberg, M. W. and J. H. Matthaei: The Dependence of Cell-free Protein Synthesis in E. coli upon Naturally Occurring or Synthetic Polyribonucleotides. Proc. Nat. Acad. Sci. (USA) 47, 1588 (1961).

    CAS  Google Scholar 

  82. Oparin, A. I.: The Origin of Life on the Earth. Edinburgh: Oliver and Boyd. 3rd Ed. 1957.

    Google Scholar 

  83. Oparin, A. I., A. E. Braunshtein, A. G. Pasynskii and T. E. Pavlovskaya (editors): Proceedings of the First International Symposium on thè Origin of Life on the Earth. New York: Pergamon Press. 1959.

    Google Scholar 

  84. Oró, J.: Comets and the Formation of Biochemical Compounds on the Primitive Earth. Nature (London) 190, 389 (1961).

    Google Scholar 

  85. Oró, J. and S. S. Kamat: Amino Acid Synthesis from Hydrogen Cyanide Under Possible Primitive Earth Conditions. Nature (London) 190, 442 (1961).

    Google Scholar 

  86. Oró, J. and A. P. Kimball: Synthesis of Purines Under Possible Primitive Earth Conditions. I. Synthesis of Adenine. Arch. Biochem. Biophys. 94, 217 (1961).

    Google Scholar 

  87. Pasteur, L.: Mémoire sur les corpuscules organisés qui existent dans l’atmosphère. Examen de la doctrine des générations spontanées. Dans: P. Valleryradot, Oeuvres de Pasteur, vol. 2, p. zTo. Paris Masson et Cie. 1922.

    Google Scholar 

  88. Pauling, L.: Discussion in (78), p. 182.

    Google Scholar 

  89. Pauling, L. and R. B. Corey: Specific Hydrogen-Bond Formation Between Pyrimidines and Purines in Deoxyribonucleic Acids. Arch. Biochem. Biophys. 65, 164 (1956).

    CAS  Google Scholar 

  90. Pauling, L., H. A. Itano, S. J. Singer and I. C. Wells: Sickle Cell Anemia, a Molecular Disease. Science (Washington) no, 543 (1949).

    Google Scholar 

  91. Pavlovskaya, T. E. and A. G. Pasynskii: The Original Formation of Amino Acids Under the Action of Ultraviolet Rays and Electric Discharges. In (78), p. 151.

    Google Scholar 

  92. Perutz, M. F., M. G. Rossmann, A. F. Cullis, H. Muirhead, G. Will and A. C. T. North: Structure of Haemoglobin. A Three-dimensional Fourier Synthesis at 5.5 A. Resolution, Obtained by X-Ray Analysis. Nature (London) 185, 416 (1960).

    CAS  Google Scholar 

  93. Pirie, N. W.: The Meaninglessness of the Terms Life and Living. In: J. Needham and D. E. Green, Perspectives in Biochemistry, p. 11. Cambridge Univ. Press. 1937.

    Google Scholar 

  94. Potter, Van R.: Nucleic Acid Outlines. Minneapolis: Burgess Publ. Co. 1960.

    Google Scholar 

  95. Rabinowitch, E. I.: Photosynthesis and Related Processes, Vol. I, p. 81. New York: Interscience Publ. 1945.

    Google Scholar 

  96. Rubey, W. W.: Development of the Hydrosphere and Atmosphere, with Special Reference to Probable Composition of the Early Atmosphere. Geol. Soc. Amer., Special Paper No. 62, 631 (1955).

    CAS  Google Scholar 

  97. Sagan, C.: Indigenous Organic Matter on the Moon. Proc. Nat. Acad. Sci. (USA) 46, 393 (1960).

    CAS  Google Scholar 

  98. Shapley, H.: Of Stars and Men. Boston: Beacon Press. 1958.

    Google Scholar 

  99. Siegel, S. M.: Catalytic and Polymerization-Directing Properties of Mineral Surfaces. Proc. Nat. Acad. Sci. (USA) 43, 822 (2957).

    Google Scholar 

  100. Sinsheimer, R. L.: The Biochemistry of Genetic Factors. Annu. Rev. Biochem. 29, 503 (196o).

    Google Scholar 

  101. Sinsheimer, R. L.: Bacteriophage With Single-Stranded Deoxyribonucleic Acid. Federat. Proc. (Amer. Soc. exp. Biol.) 20, 661 (1961).

    CAS  Google Scholar 

  102. Sinton, W. M.: Further Evidence of Vegetation on Mars. Science (Washington) 130, 1234 (1959).

    CAS  Google Scholar 

  103. Speyer, J. F., P. Lengyel, C. Basilio and S. Ocxoa: Synthetic Poly-nucleotides and the Amino Acid Code. IV. Proc. Nat. Acad. Sci. (USA) 48, 442 (1962).

    Google Scholar 

  104. Spizizen, J.: Genetic Activity of Deoxyribonucleic Acid in the Reconstitution of Biosynthetic Pathways. Federat. Proc. (Amer. Soc. exp. Biol.) 18, 957 (1959).

    CAS  Google Scholar 

  105. Stadler, L. J. and F. M. Uber: Genetic Effects of Ultraviolet Radiation in Maize. IV. Comparison of Monochromatic Radiations. Genetics 27, 84 (1942).

    CAS  Google Scholar 

  106. Stevens, A.: Incorporation of the Adenine Ribonucleotide into RNA by Cell Fractions from E. coli B. Biochem. Biophys. Res. Comm. 3, 92 (1960).

    CAS  Google Scholar 

  107. Swallow, A. J.: Radiation Chemistry of Organic Compounds. New York: Pergamon Press. 1960.

    Google Scholar 

  108. Taylor, J. H., P. S. Woons and W. L. Hughes: The Organization and Duplication of Chromosomes as Revealed by Autoradiographic Studies Using Tritium-Labeled Thymidine. Proc. Nat. Acad. Sci. (USA) 43, 122 (1957)

    CAS  Google Scholar 

  109. Terenin, A. N.: Photosynthesis in the Shortest Ultraviolet. In (78), p. 136.

    Google Scholar 

  110. Urey, H. C.: The Planets, their Origin and Development. New Haven, Conn.: Yale Univ. Press. 1952.

    Google Scholar 

  111. Urey, H. C.: On the Early Chemical History of the Earth and the Origin of Life. Proc. Nat. Acad. Sci. (USA) 38, 351 (1952).

    CAS  Google Scholar 

  112. Urey, H. C.: On the Concentration of Certain Elements at the Earth’s Surface. Proc. Roy. Soc. (London) 219 A, 281 (1953)

    Google Scholar 

  113. Urey, H. C.: The Atmospheres of the Planets. In: S. Flügge, Handbuch der Physik, Bd. 52, S. 363. Berlin: Springer-Verlag. 2959.

    Google Scholar 

  114. Wald, G.: The Origin of Optical Activity. Ann. N. Y. Acad. Sci. 69, 352 (1957)

    CAS  Google Scholar 

  115. Wang, J. H.: Hemoglobin Studies. II. A Synthetic Material with Hemoglobin-like Property. J. Amer. Chem. Soc. 80, 3168 (1958).

    CAS  Google Scholar 

  116. Watson, H. C. and J. C. Kendrew: Comparison Between the Amino-Acid Sequences of Sperm Whole Myoglobin and of Human Haemoglobin. Nature (London) 290, 670 (1961).

    Google Scholar 

  117. Watson, J. D. and F. H. C. Crick: Molecular Structure of Nucleic Acids. A Structure for Deoxyribose Nucleic Acid. Nature (London) 171, 737 (1953).

    CAS  Google Scholar 

  118. Watson, J. D. and F. H. C. Crick: Genetical Implications of the Structure of Deoxyribonucleic Acid. Nature (London) 271, 964 (1953).

    Google Scholar 

  119. Weiss, S. B. and T. Nakamotu: On the Participation of DNA in RNA Biosynthesis. Proc. Nat. Acad. Sci. (USA) 47, 694 (1961).

    CAS  Google Scholar 

  120. Wright, S.: Color Inheritance in Mammals. J. Hered. 8, 224 (1917).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1962 Springer-Verlag in Vienna

About this chapter

Cite this chapter

Horowitz, N.H., Miller, S.L. (1962). Current Theories on the Origin of Life. In: Zechmeister, L. (eds) Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products / Progrès dans la Chimie des Substances Organiques Naturelles. Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products / Progrès dans la Chimie des Substances Organiques Naturelles, vol 20. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7153-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7153-0_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7155-4

  • Online ISBN: 978-3-7091-7153-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics